Differential Evolution and Deterministic Chaotic Series: A Detailed Study

  • Roman Senkerik Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence
  • Adam Viktorin Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence
  • Ivan Zelinka VŠB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science
  • Michal Pluhacek Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence
  • Tomas Kadavy Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence
  • Zuzana Kominkova Oplatkova Tomas Bata University in Zlin, Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence
  • Vikrant Bhateja Shri Ramswaroop Memorial Group of Professional Colleges (SRMGPC), Department of Electronics and Communication Engineering
  • Suresh Chandra Satapathy Kalinga Institute of Industrial Technology, School of Computer Engineering
Keywords: Differential Evolution, Complex dynamics, Deterministic chaos, Population diversity, Chaotic map

Abstract

This research represents a detailed insight into the modern and popular hybridization of deterministic chaotic dynamics and evolutionary computation. It is aimed at the influence of chaotic sequences on the performance of four selected Differential Evolution (DE) variants. The variants of interest were: original DE/Rand/1/ and DE/Best/1/ mutation schemes, simple parameter adaptive jDE, and the recent state of the art version SHADE. Experiments are focused on the extensive investigation of the different randomization schemes for the selection of individuals in DE algorithm driven by the nine different two-dimensional discrete deterministic chaotic systems, as the chaotic pseudorandom number generators. The performances of DE variants and their chaotic/non-chaotic versions are recorded in the one-dimensional settings of 10D and 15 test functions from the CEC 2015 benchmark, further statistically analyzed.

References

Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution–an updated survey. Swarm and Evolutionary Computation 27, 1–30 (2016).

Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact Differential Evolution for limited memory optimization problems. Information Sciences 181(12), 2469–2487 (2011).

Zamuda, A., Brest, J.: Self-adaptive control parameters' randomization frequency and propagations in differential evolution. Swarm and Evolutionary Computation 25, 72–99 (2015).

Caponetto, R., Fortuna, L, Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003).

Coelho, L.d.S., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons & Fractals 39(2), 510–518 (2009).

Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010).

Zhenyu, G., Bo, C., Min, Y., Binggang, C.: Self-adaptive chaos differential evolution. In: International Conference on Natural Computation, pp. 972–975. Springer, Berlin, Heidelberg (2009).

Ozer, A.B.: CIDE: chaotically initialized differential evolution. Expert Systems with Applications 37(6), 4632–4641, (2010).

Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with ensemble of chaotic systems. Swarm and Evolutionary Computation 25, 29–35 (2015).

Metlicka, M., Davendra, D.: Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm and Evolutionary Computation 25, 15–28 (2015).

Davendra, D., Bialic-Davendra, M., Senkerik, R.: Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), pp. 119–126. IEEE.

Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation 18(1), 89–98 (2013).

Wang, G.G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft Computing 20(9), 3349–3362 (2016).

Coelho, L.d.S., Ayala, H.V.H., Mariani, V.C.: A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Applied Mathematics and Computation 234(0), 452–459 (2014).

Coelho, L.d.S., Pessoa, M.W.: A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic Zaslavskii map. Expert Systems with Applications 38(11), 13694–13701 (2011).

Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014).

Senkerik, R., Pluhacek, M., Zelinka, I., Viktorin, A., Oplatkova, Z.K.: Hybridization of Multi-chaotic Dynamics and Adaptive Control Parameter Adjusting jDE Strategy. In: International Conference on Soft Computing-MENDEL, pp. 77–87. Springer, (2016).

Senkerik, R., Pluhacek, M., Zelinka, I., Davendra, D., Janostik, J.: Preliminary Study on the Randomization and Sequencing for the Chaos Embedded Heuristic. In: Abraham A, Wegrzyn-Wolska K, Hassanien EA, Snasel V, Alimi MA (ed.) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, pp 591–601. Springer International Publishing, (2016).

Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T.: On the Population Diversity for the Chaotic Differential Evolution. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018).

Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T., Oplatkova, Z.K.: Differential Evolution and Chaotic Series. In: 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–5. IEEE (2018).

Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE transactions on evolutionary computation 10(6), 646–657 (2006).

Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003).

Chen, Q., Liu, B., Zhang, Q., Liang, J.J., Suganthan, P.N., Qu, B.Y.: Problem Definition and Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, (2014).

Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multichaotic framework for parent selection performance on CEC2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803. IEEE (2016).

Published
2018-12-21
How to Cite
[1]
Senkerik, R., Viktorin, A., Zelinka, I., Pluhacek, M., Kadavy, T., Kominkova Oplatkova, Z., Bhateja, V. and Satapathy, S. 2018. Differential Evolution and Deterministic Chaotic Series: A Detailed Study. MENDEL. 24, 2 (Dec. 2018), 61–68. DOI:https://doi.org/10.13164/mendel.2018.2.061.
Section
Research articles