
INTERRC: AN INTER-RESOURCES COLLABORATION HEURISTIC FOR
SCHEDULING INDEPENDENT TASKS ON HETEROGENEOUS DISTRIBUTED
ENVIRONMENTS

Abdelhamid Khiat1,2,�, Abdelkamel Tari2
1Networks and Distributed Systems Division, Research Center on Scientific and Technical Information, Algeria
2Faculty of Exact Sciences, University of Bejaia, Algeria

a.khiat@dtri.cerist.dz�, abdelkamel.tari@univ-bejaia.dz

Abstract
The independent task scheduling problem in distributed computing environments
with makespan optimization as an objective is an NP-Hard problem. Conse-
quently, an important number of approaches looking to approximate the optimal
makespan in reasonable time have been proposed in the literature. In this pa-
per, a new independent task scheduling heuristic called InterRC is presented. The
proposed InterRC solution is an evolutionary approach, which starts with an ini-
tial solution, then executes a set of iterations, for the purpose of improving the
initial solution and close the optimal makespan as soon as possible. Experiments
show that InterRC obtains a better makespan compared to the other efficient
algorithms.

Keywords: distributed computing, scheduling, makespan, evolutionary algo-
rithms.

Received: 29 April 2019
Accepted: 17 June 2019
Published: 24 June 2019

1 Introduction

Nowadays, most computing architectures are distributed, like Cloud, Grid and High-Performance Computing
(HPC) environment [13]. This kind of architectures can be used to achieve a hard computing, which takes
longer time when executed on only one computer. This is why it is important to execute this work on a parallel
architecture sustained by a significant number of computing resources.

A work is composed of several tasks, each one of them representing a program unites that cannot be divided.
In a given work, the necessary time to finish the last task is called makespan. In order to ensure the execution
of a work in a distributed environment, a set of resources must be allocated, then, each task of the work must be
assigned to one of these allocated resources. The latter are often of heterogeneous nature, which means that the
execution time of a task changes from a resource to another. Subsequently, the makespan changes according to
the used mapping. Therefore and in order to ensure a better mapping of the set of tasks to the set of allocated
resources, a power scheduler must be used.

The problem of scheduling remains one of the more important challenges in distributed computing envi-
ronments. In general, the scheduling problems are classified as NP-Hard [6], which means that there is no
known general solution for which can get the optimal value of the makespan in a time that is polynomial in
the problem size. As a Consequence, an important number of approaches have been proposed in the literature,
these approaches envisages to find a mapping and come close to the optimal makespan in reasonable time.

Evolutionary approaches are considered as an important way to solve this problem of scheduling. Usually, in
an evolutionary approach, the value of makespan improved over time, by starting from a solution called initial
solution which is then improved through iterations until reaching one or some conditions called end conditions.

In this article, a new evolutionary heuristic is exposed. It tries to find a best mapping of a set of tasks to a
set of heterogeneous resources in a distributed environment with the objective of makespan minimization. The
proposed approach uses a new concept called InterRC : a given solution can evolve to a better solution using
some operators which will be presented in details in Section 3. We assume that the tasks of a given work are
independent, non preemptive, and with same static priorities.

This article is organized as follows. Section 2 composed of two subsections: the first one presents the related
work based on fast deterministic heuristics, and the second one presents the related work based on evolutionary
heuristics, including the presentation of some scheduling algorithms that has the makespan optimization as
objective. Section 3 presents the used model and the details of the proposed heuristic named InterRC. Then,
Section 4 presents the evaluation of InterRC, including a comparison of InterRC with some others heuristics.
Finally, Section 5 gives the conclusion and the future work.

https://doi.org/10.13164/mendel.2019.1.179
ISSN: 1803-3814 (Printed), 2571-3701 (Online)

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

179

2 Related Work

The complexity of task scheduling problem in distributed environments when it comes to find the optimal
makespan is NP-Hard in general [6], consequently, there is a lack of solutions that can find the optimal
makespan in a reasonable time, especially when the problem size increases. An important number of ap-
proximate approaches that address the problem have been proposed in the literature, these approaches envisage
to find in reasonable time a solution near as possible to the optimal solution. A set of non exhaustive works
will be presented in the remainder of this section. The presentation will be done in two subsections. In the first
one, a set of fast deterministic heuristics will be presented, then, in the second one, some evolutionary approach
will be introduced.

2.1 Related Work Based on Fast Deterministic Heuristics

Max-Min [5] algorithm consists to execute a set of iteration. The iteration process consists of selecting the task
that has the biggest completion time, and then affects it to the resource that gives the minimum execution time.
It subsequently repeats this process until the end of scheduling all tasks. After each iteration, the completion
time is updated for each task that is not yet executed.

In the Min-Min [5] scheduling process, an iteration consists of selecting the resource that has the minimum
value of completion time, then, the task that has the minimum execution time on this resource is selected, as
Max-Min, after each iteration the completion time is updated for all tasks not yet mapped.

Min-Max [9] heuristic works as Max-Min and Min-Min approach, that schedules one task in each iteration,
until the scheduling of all tasks. At each iteration, the minimum completion times of all unassigned tasks over
all available resources are computed. Then, for each unassigned task, the ratio of its minimum execution time on
all resources to the execution time on the processor that resulted to the minimum completion time is computed.
The task that has the highest value of this ratio is removed from the list of unassigned tasks and scheduled to
the resource that gives the minimum completion time.

Sufferage algorithm [10] executed in iterations where each iteration is composed of two processes. The first
one consists to compute for each task a value called sufer, which represents the difference between the first and
the second minimum execution time of the concerned task. While the second one allows to affect the task with
maximum suffer to the resource that gives the minimum completion time. These two processes are repeated
until the end of the assignment of all tasks.

LSufferage proposed in [7] is inspired from Sufferage. In LSufferage algorithm, a static descending ordered
list is generated for each possessor p, each element of the generated lists contains the task identifier and an
associated value obtained by computing the ratio between the maximum execution time of the concerned tasks
T and its execution time on p if the execution time of T on p is not the maximum execution time, otherwise,
the value is calculated by the division of the execution time on the second fastest possessor on the maximum
execution time (p). Finally, the scheduler bases on these values to schedule each task to the processor according
to their priority (computed ratios).

An algorithm called Relative Cost algorithm (RC) was proposed in [15]. RC utilizes an indicator called
Relative Cost (RC). According to authors, RC retains the advantages of the Min-Min algorithm regarding
makespan, and balances the load very well. The task and resource that will be selected in each iteration is
based on two quantities: the static relative cost and the dynamic relative cost. The static relative cost is
computed once at the start of the algorithm as rate between the execution time of this task on this resource to
the average of its execution time on all available resources. The dynamic relative cost is computed before each
task is scheduled as rate of the completion time of task on the resource to the average of its completion time
on all available resources.

Round Robin (RR) algorithm is a simple heuristic with low complexity, which remains largely used in a
significant number of algorithms, particularly, in the real deployed algorithms. RR algorithm affects the first
task in the set of not affected tasks to the first available found resource, until affectation of all tasks.

2.2 Related Work Based on Evolutionnar Approach

Genetic Algorithm (GA) [8] is a popular meta-heuristic, considered as an evolutionary approach works in poly-
nomial time, GA is inspired by the biologic process of the natural selection, in a standard GA, the algorithm
starts with an initial population, where this latter is composed of a set of solutions called individuals (chromo-
somes), the initial population known as first generation as inspired from the biologic language, the GA looks to
improve the initial population by applying two main operators Crossover and Mutation, the new population
called new generation. The passage from a generation to another is called iteration, Crossover operator consists
to exchange a parts (gens) of two selected individuals, while Mutation operator consists to alter one or more
gens with a given probability called crossover probability, usually the value of the latter is low.

InterRC: An Inter-Resources Collaboration Heuristic for Scheduling Independent Tasks…

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

180

A fitness function is used in the selection processes, by giving to best individual a high probability to continue
its existence in the next generation, while the individuals with lower fitness values will have a high probability
to be dropped out. Then, a stop criteria is used to make an end to the algorithm, that can be a fix number
of generations, non evolution in the result after a number of generation, or a fixed time of execution of the
algorithm.

Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are two other evolutionary heuris-
tics inspired by living world. The first one [3] is inspired by the foraging behavior of ants, while the second
one [14] is inspired by the behaviour of the particles working in collaboration in the swarm.

CHC [4] is a specialization of the traditional GA that uses an elitist selection strategy that tends to keep the
best individuals in the population. CHC algorithm proposed originally in [4] is an evolutionary algorithm, CHC
algorithm uses a special recombination called Half Uniform Crossover (HUX), which randomly swaps exactly
half of the bits that differ between two selected solutions (parents). These latter are usually the individuals
with a difference in 1/4 bits of the chromosome length for the first generation, and this number reduced by one
1 each time that no offspring is inserted into the new population, the new offspring must compete with their
parents for survival. Note that the mutation operator is not used in CHC algorithm.

In [16], a Cellular Memetic Algorithm (CMA) was applied for solving the rescheduling problem in the case
of batch jobs. The proposed approach shows generated solutions of good quality and a short execution time of
the rescheduling procedure.

An other implementation of GA is proposed in [12]. The authors use the GA in a conventional cluster, in
which a millicomputers was added to reduce power consumption. This algorithm is called PA-CGA (Parallel
Asynchronous - Cellular Genetic Algorithm) and was designed to schedule independent tasks on a distributed
system.

3 Proposed Solution

In this section we introduce the proposed heuristic, by first presenting the Heterogeneous Computing Scheduling
Problem (HCSP) formulation with some considerations about the used execution time estimation (ETC) mode,
and then describing the details of the proposed InterRC heuristics.

3.1 Problem Description

The problem addressed in this paper can be described as follows: a set of tasks T = {T0, ..., Tn−1} must
be mapped to a set of resources R = {R0, ..., Rm−1}, where n represents the total number of tasks to be
scheduled and m represents the total number of available resources allocated to execute the whole set of tasks
T . Assuming that a matrix ET of n ∗ m elements is defined, where each entry ET [i][j] of the matrix ET
represents the execution time of the task Ti on the resource Rj whatever Ti ∈ T and Rj ∈ R.

It is assumed that all tasks to be scheduled are independents and non-preemptive, i.e. There is no dependency
relationship between the tasks and whatever Ti, Ti cannot stop once started. In addition to these two conditions
(independence and non-preemptively), all tasks are of the same priority, that is, for each couple (Ti, Tj) in T ,
Ti and Tj have the same chance to be scheduled first.

The model used to estimate the execution time of each task Ti in T on each resource Rj in R is the one defined
by Ali et al [1]. This model is considered as one of the most widely used models for HCSP. When generating
the matrix ET this model takes into account three properties: machine heterogeneity, task heterogeneity, and
consistency.

Machine heterogeneity represents the relation between resources in term of computing power, which results
in a variation of execution time. In a high machine heterogeneity HCSP systems, the difference between the
execution time of a task Ti from a resource to another is high. On the other hand, in low machine heterogeneity,
the difference between execution times is low. The task heterogeneity represents the difference of computing
power needs from a task to other. Subsequently, in a high task heterogeneity HCSP, there is a high difference in
term of execution time from a task to another on a given resource Rj . In contrast, for a low task heterogeneity
HCSP this difference remains low. The third classification used in HCSP is the consistence: in a consistent
ETC, if a task Ti is slower than a task Tj on Rj , then Ti is slower than a Tj on all other machines. An ETC is
inconsisrent if it is possible to find two tasks Ti and Tj such that Ti is slower than Tj on some machines and Tj

is slower than Ti on other machines. Moreover, a semi-consistent ETC can be used to model those inconsistent
systems that include a consistent subsystem.

3.2 InterRC Heuristic

In this sub-section, the different elements of understanding the InterRC heuristic, as well as the process flow,
will be presented in detail in five sub-sections.

A. Khiat and A. Tari

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

181

3.2.1 Objective

The main goal of InterRC heuristic consists of optimizing the makespan of such HCSP described above, where
makespan represents the total time needed to complete the execution of all the tasks, which can be computed
using Formula 1. In the Formula, ET [i][j] represents the execution time of Ti on Rj as already described in the
previous subsection and bij is a boolean value which is equal to 1 if Ti is affected to Rj , otherwise bij equals to
0.

makespan = maxj=1...m

n∑
i=0

ET [i][j] ∗ bij

With, bij =

{
1 if Ti executed on Rj

0 else

(1)

3.2.2 Operators

The following two operators are defined, and used by InterRC heuristic.
move: consists to test if the value of makespan obtained after a move of a task Ti from a resource Rj1 to

another resource Rj2 will not exceed the actual makespan. If that is the case, the move is applied, otherwise,
it will not be applied.

permutation: consists in checking if the makespan after a permutation between two distinct tasks Ti1 and
Ti2 situated on two different resources Rj1 and Rj2 will not exceed the actual makespan, then the permutation
is applied in case the test proves to be true, if not, it is not applied.

3.2.3 End Conditions

The InterRC heuristic comes to an end if one of the two following conditions is reached: The time MaxResT ime
which represents the maximum time dedicated to the execution of InterRC algorithm is reached, or the loop
L1 presented in both algorithms (Algorithm 3 and Algorithm 4) ends with any improvement of the actual
makespan in the case of Algorithm 3, or with any redistribution possible in the case of Algorithm 4.

3.2.4 Global Process

As described in Algorithm 1, the global process of InterRC heuristic consists to three phases: The first one aims
to generate an initial solution, while the second one looks to improve the actual makespan. Finally, the third
phase allows to redistribute the set of tasks on the set of available resources without exceeding the actual value
of makespan. Note that the second and third phases are executed alternatively with a fixed number of times
(NbrIterations). The alternation allows a maximum redistribution, and avoid the system stability as much
as possible. The stability means the difficulty to find any moving/permutation that can improve the actual
makespan. The second and third phases can be achieved using permutation/move operators.

Call Algorithm 2
i=1;
while NotEndExecT ime AND improve = true AND i ≤ NbrIteration do

i++;
Call Algorithm 3;
Call Algorithm 4;

end
Return Task affectation;

Algorithm 1: Global InterRC Process

3.2.5 Detailed Process

The details of the three phases of InterRC heuristic are:

A. Initial affectation: This first phase described by Algorithm 2 consists of generating an initial solution,
which starts by choosing randomly a resource Rinit and a task Tinit. Then, the loop L1 of Algorithm 2 is
called to assign all tasks to Rinit starting by Tinit. Note that the choice of Rinit and Tinit has an impact
on the final makepan.

InterRC: An Inter-Resources Collaboration Heuristic for Scheduling Independent Tasks…

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

182

Choose randomly a resources Rj init AND a task Ti init

for (ii = 0; ii < n; ii + +) do
i = (ii + i init)%n;
Assign Ti to Rj init ;

end
Return Task affectation;

Algorithm 2: Initial affectation

B. makespan improvement: In this second phase of InterRC heuristic, which is described by Algorithm 3, a
loop of the set of tasks affected to RjMS is done (RjMS represents the resource that gives the makespan).
Then, for each found task Tims, the algorithm loops the set of other resources (other than RjMS) and for
each found resource Rj with Rj ! = RjMS , the algorithm tests in the first time if the move of Tims from
RjMS to Rj improves the actual makespan; if the test is positive, the move operation is realized, the
new makespan is computed, and loop L1 broken with the update of improve value to true. Otherwise,
the loop L3 are triggered with the aim of finding a task Ti1 that can improve the actual makespan if it
is permuted with Tims, as soon as a task Ti1 is found, the permutation is realized, the new makespan is
calculated, and the loop L3 is broken with the update of improve value to true.

improve = true
L0: while (ResT ime < Max ResT ime AND improve = true) do

improve = false
L1: forall Tims ∈ RjMS do

L2: forall (Rj ∈ R AND Rj 6= Rms) do
if (Move(Tims to Rj) improves MS) then

Move(Tims, Rj); MS = Get New MS; improve = true;
break L1;

else
L3: forall (Ti ∈ Rj AND Rj ! = RjMS) do

if Permut(Ti, Tims) improves MS then
Permute(Ti, Tims); MS = Get New MS; improve = true;
break L1;

else

end

end

end

end

end

end
Return Task affectation;

Algorithm 3: makespan improvement

C. Task redistribution: Algorithm 4 describes this third phase of InterRC heuristic. Unlike Algorithm 3,
Algorithm 4 will not try the move of a task from RjMS , or the permutation of a task situated on RjMS

with another task located on another resource other than RjMS . But rather, the tests will be larger. In
more details, the loop L1 allows to loop the set of resources R, then, for each found resource Rj1, a loop
of the tasks affected to Rj1 is done. Afterward, the algorithm re-loop the set of resource and for each
found resource Rj2. The algorithm test in the first time if the move of Ti1 to Rj2 will not penalize the
actual value of makespan, then the move is applied in case the test proves to be true, if not, the loop L3
are triggered in order to find a task Ti2 that does not penalize actual makespan if it is permuted with
Ti1, as soon as a permutation is possible, the permutation is realized, the new makespan is calculated,
and the loop L3 is broken with the update of improve value to true.

In this third phase, each task can be moved/permuted only once, to ensure this uniqueness of
move/permutation, a set called Ts Tested is created, then, the tasks candidate to moving/permutation
operators are added to this set. Thereafter, the tasks of the set Ts Tested cannot re-participate to another
move/permutation operations. The use of Ts Tested set allow to finish the phase fast as possible, with
maximum move/permutation possible.

A. Khiat and A. Tari

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

183

improve = true
L0: while (ResT ime < Max ResT ime AND improve = true) do

forall Tj1 ∈ R do
L1: forall Ti1 ∈ Rj1 do

if (!Ti1 /∈ Ts Tested) then
Ts Tested.add(Ti1);
L2: forall (Rj2 ∈ R AND Rj2 6= Ri1) do

if (Move(Ti1 to Rj2) improvesMS) then
Move(Ti1, Rj2); MS = Get New MS; improve = true;
break L1;

else
L3: forall (Ti2 ∈ Rj2) do

if Permut(Ti1, Ti2) improves MS then
Permute(Ti1, Ti2); MS = Get New MS; improve = true;
break L1;

else

end

end

end

end

else

end

end

end

end
Return Task affectation;

Algorithm 4: Task redistribution

4 Experiments

In order to evaluate InterRC approach, a simulator was developed using Java, R and shell. Then, the proposed
InterRC algorithm was implemented and integrated to the developed simulator using the Java language. The
phase of evaluation was realized on a PC with Processor i7 and 8GO of RAM, on which, a set of experiments
was done, then the results of InterRC algorithm are compared with a set of algorithms, already presented in
the Section 2.

The proposed InterRC was compared with two kinds of heuristics: the first one is the fast deterministic
heuristics, which are characterized by a low execution time and give the same result even if we repeat the
execution of the algorithm many times. While the second kind is the evolutionary approaches characterized by
good results. The chosen fast deterministic heuristics are RC [15], Sufferage [10], Min-Max [9], and Min-Min [9].
While the used evolutionary heuristics are cMA [16], GA [8], PA-CGA [12] and CHC [4].

This evaluation was made on the 12 classic problem instances proposed by Braun et al in [2], each instance
has 512 tasks and 16 machines.

The execution of InterRC algorithm has been redone several times, then, the best obtained results are
presented in Table 2 and Table 1. Table 2 shows the comparison of the makespan obtained by InterRC
algorithm with the evolutionary algorithms, while Table 1 compares the obtained makespan with the best
known and fast deterministic heuristics.

The last column (LP Bound) of both tables (Table 1 and Table 2) corresponds to the lower bound for the
makespan value, which can be computed by solving the linear relaxation for the preemptive case using a linear
programming solver [11]. And the grey fields in these both tables Indicate that the corresponding value is
less than the value obtained by our algorithm, that means, the makespan is not improved using our proposed
algorithm.

Three parameters can change the resulting makespan. The algorithm’s execution time, the values of Rj init

and Ti init, and the value NbrIterations. In our implementation, the fixed time for InterRC execution is 20s
for all tests, Rj init and Ti init values are randomly selected in each test and the NbrIterations was fixed to 4
each one (redistribution/improvement) executed for 5s to get 4∗5 = 20s that the total execution time dedicated
to InterRC.

In order to study the speed of the makespan evolution as a function of time when running the InterRC
heuristic, the following process is followed:

InterRC: An Inter-Resources Collaboration Heuristic for Scheduling Independent Tasks…

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

184

Dataset Min-Min Min-Max RC Sufferage LSufferage InterRC LP Bound
A.u˙c˙hihi.0 8460675.0 8205561.3 9576839.0 10249172.9 8092234.8 7434522,4 7346524.2
A.u˙c˙hilo.0 161805.4 161686.8 163200.2 168982.6 160100.3 154111,9 152700.4
A.u˙c˙lohi.0 275837.4 279907.7 309192.7 337121.5 255070.3 241582,7 238138.1
A.u˙c˙lolo.0 5441.4 5485.4 5542.6 5658.5 5487.4 5174,3 5132.8
A.u˙i˙hihi.0 3513919.3 3066454.8 3447651.4 3306818.9 3436518.1 2985279,8 2909326.6
A.u˙i˙hilo.0 80755.7 75711.6 76471.5 77589.1 77998.5 74194,2 73057.9
A.u˙i˙lohi.0 120517.7 108533.3 126002.4 114578.9 112400.9 104378,5 101063.4
A.u˙i˙lolo.0 2785.6 2613.5 2677.0 2639.3 2735.7 2569,4 2529.0
A.u˙s˙hihi.0 5160342.8 4627988.8 5068011.5 5121953.6 4394021.6 4216710,5 4063563.7
A.u˙s˙hilo.0 104375.2 100128.4 101739.6 102499.9 100813.8 97782,8 95419.0
A.u˙s˙lohi.0 140284.5 133039.3 143491.2 150297.1 134568.5 123327,7 120452.3
A.u˙s˙lolo.0 3806.8 3555.2 3679.6 3846.5 3695.8 3486,6 3414.8

Table 1: Makespan comparaison with deterministic heuristics

Instance cMA GA PA-CGA CHC MA + TS InterRC LP Bound
A.u˙c˙hihi0 7700930 7659879 7437591 7599288 7530020 7434522,4 7346524.2
A.u˙c˙hilo0 155335 155092 154393 154947 153917 154111,9 152700.4
A.u˙c˙lohi0 251360 250512 242062 251194 245289 241582,7 238138.1
A.u˙c˙lolo0 5218 5239 5248 5226 5174 5174,3 5132.8
A.u˙i˙hihi0 3186665 3019844 3011581 3015049 3058475 2985279,8 2909326.6
A.u˙i˙hilo0 75857 74143 74477 74241 75109 74194,2 73057.9
A.u˙i˙lohi0 110621 104688 104490 104546 105809 104378,5 101063.4
A.u˙i˙lolo0 2624 2577 2603 2577 2597 2569,4 2529.0
A.u˙s˙hihi0 4424541 4332248 4229018 4299146 4321015 4216710,5 4063563.7
A.u˙s˙hilo0 98284 97630 97425 97888 97177 97782,8 95419.0
A.u˙s˙lohi0 130015 126438 125579 126238 127633 123327,7 120452.3
A.u˙s˙lolo0 3522 3510 3526 3492 3484 3486,6 3414.8

Table 2: Makespan comparaison with evolutionary heuristics

The value of the best makespan (best ms) given by the Min-Min, Max-Min, RC and Sufferage is calculated
before launching the InterRC algorithm. Then, at each detection of improvement of the makespan value
during InterRC execution, a ratio ratio between this makespan (ms evol) and best ms is calculated using the
Formula 2.

ratio =

 (best ms/ms evol)-1 if best ms < ms evol

1-(ms evol/best ms) else
(2)

A negative value of ratio means that best ms is not yet reached, whilst a positive value of ratio means that
ms evol is better than best ms. The convergence of the raio value to 0 means that ms evol value converges to
best ms value. On the contrary, when the value of ratio Keep away from 0 to one of the other peak values (1
or −1), that means, the value of ms evol, Keep away from the value of best ms. This move away is to a better
result if the peak value is 1, but in other case, the move away is to a bad result.

Fig. 1a, allows to visualize the evolution speed of the ratio value obtained for each instance. It shows that the
makespan improvement through InterRC is done quickly at first time, and the ms evol value converges quickly
towards the BestMS value, but after some time, the improvement speed starts to become relatively heavy;
ultimately, the makespan improvement can stop, which makes the continuation of the algorithm execution
unnecessary.

Fig. 1b is zoomed to view in more detail the evolution speed of ms evol before reaching the value of best ms,
it is clear that the nature of this evolution can varied from an instance to other, which allows to say that the
evolution speed depends on the nature of tasks, as well as resources.

The gap value is another parameter used in our evaluation, that represents the relative gap value of any
algorithm with respect to the corresponding lower bound, gap value is calculated using Formula 3. When,
MS LP Bound is the makespan obtained by lp bound and MS Algo presents the makespan of the algorithm
on which we look to calculate the gap value.

Fig. 2 shows that average of gap value of the evaluated algorithms, the InterRC gap value is the best one
comparing with all other algorithms with a value equal to 2.013. Fig. 2 shows also that the gap value of
evolutionary approaches are the best comparing with all other fast deterministic heuristics.

A. Khiat and A. Tari

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

185

−1.00

−0.75

−0.50

−0.25

0.00

0e+00 1e+10 2e+10 3e+10 4e+10

Time(ns)

R
at

io
(%

)

Instance
A.u_c_hihi
A.u_c_hilo
A.u_c_lohi
A.u_c_lolo
A.u_i_hihi
A.u_i_hilo
A.u_i_lohi
A.u_i_lolo
A.u_s_hihi
A.u_s_hilo
A.u_s_lohi
A.u_s_lolo

(a) Evolution of the ration value as function of time

−1.00

−0.75

−0.50

−0.25

0.00

0e+00 2e+09 4e+09 6e+09

Time(ns)

R
at

io
(%

)

Instance
A.u_c_hihi
A.u_c_hilo
A.u_c_lohi
A.u_c_lolo
A.u_i_hihi
A.u_i_hilo
A.u_i_lohi
A.u_i_lolo
A.u_s_hihi
A.u_s_hilo
A.u_s_lohi
A.u_s_lolo

(b) Zoom on Fig. 1a

Figure 1: Evolution of the ration value as function of time

InterRC: An Inter-Resources Collaboration Heuristic for Scheduling Independent Tasks…

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

186

gap =
MS LP Bound−MS Algo

MS LP Bound
(3)

17.539

15.582

14.001

8.919

7.928

5.275

3.379

3.215

3.188

2.642

2.013InterRC

PA−CGA

CHC

MA+TS

GA

cMA

Min−Max

LSufferage

Min−Min

RC

Sufferage

0 5 10 15

Gap value

A
lg

or
ith

m

Algorithm

InterRC

PA−CGA

CHC

MA+TS

GA

cMA

Min−Max

LSufferage

Min−Min

RC

Sufferage

Figure 2: Gap value to the lower bound

5 Conclusion

The Heterogeneous Computing Scheduling Problem (HCSP) that we have addressed in this paper is known as
an NP-Hard problem when it comes to optimize the makespan. The number of research works examining this
problem keeps increasing, especially, with the increased need for computing power. The latter can be achieved
through powerful computing architectures like Cloud, HPS, FOG and Grid computing.

In this paper we have proposed InterRC, a new evolutionary heuristic that looks to evolve towards the
better final makespan starting from an initial solution. Then, switch alternatively between two phase (redis-
tribution/improvement) until reaching one of two stop conditions already discussed above. Our experiments
phase are achieved by simulation, then different comparisons of the proposed InterRC heuristic with others
heuristics shows that the proposed approach gives a better makespan in about 90 % of cases comparing with
evolutionary approaches, and in 100 % of cases comparing with fast deterministic heuristics.

Some directions exist on extending this work: the proposed InterRC can be adapted to schedule the
dependent tasks, as can be interesting to think about the integration of fault tolerance management aspect
where one or more resources failed to continue its work. Another direction could be the incorporation of
multi-objective optimization.

References

[1] Ali, S., Siegel, H. J., Maheswaran, M., Hensgen, D., and Ali, S. 2000. Task execution time modeling for
heterogeneous computing systems. In Proceedings 9th Heterogeneous Computing Workshop (HCW 2000).
Cat. No.PR00556, pp. 185–199. DOI: 10.1109/HCW.2000.843743

[2] Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. L., Maheswaran, M., Reuther, A. I., Robertson, J. P.,
Theys, M. D., Yao, B., Hensgen, D., and Freund, R. F. 2001. A Comparison of Eleven Static Heuristics
for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal
of Parallel and Distributed Computing 61, 1, pp. 810–837.

[3] Dorigo, M. and Di Caro, G. 1999. Ant colony optimization: a new meta-heuristic. In Proceedings of the
1999 congress on evolutionary computation-CEC99. Cat. No. 99TH8406, IEEE, pp. 1470–1477.

A. Khiat and A. Tari

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

187

[4] Eshelman, L. J. 1991. The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in
Nontraditional Genetic Recombination. In Foundations of Genetic Algorithms. Vol 1, Elsevier, pp. 265–283.
DOI: 10.1016/B978-0-08-050684-5.50020-3

[5] Etminani, K. and Naghibzadeh, M. 2007. A min-min max-min selective algorithm for grid task scheduling.
In 2007 3rd IEEE/IFIP International Conference in Central Asia on Internet. IEEE, pp. 1–7.

[6] Gary, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
completeness. WH Freeman and Company, New York, USA.

[7] Gogos, C., Valouxis, C., Alefragis, P., Goulas, G., Voros, N., and Housos E. 2016. Scheduling indepen-
dent tasks on heterogeneous processors using heuristics and Column Pricing. Future Generation Computer
Systems 60, pp. 48–66.

[8] Golberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA.

[9] Izakian, H., Abraham, A., and Snasel, V. 2009. Comparison of heuristics for scheduling independent tasks
on heterogeneous distributed environments. In 2009 International Joint Conference on Computational
Sciences and Optimization. Vol 1, IEEE, pp. 8–12.

[10] Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., and Freund, R. F. 1999. Dynamic mapping of a class
of independent tasks onto heterogeneous computing systems. Journal of parallel and distributed computing
59, 2, 107–131.

[11] Nesmachnow, S., Cancela, H., and Alba, E. 2012. A parallel micro evolutionary algorithm for heterogeneous
computing and grid scheduling. Applied Soft Computing 12, 2, 626–639.

[12] Pinel, F., Dorronsoro, B., and Bouvry, P. 2010. A new parallel asynchronous cellular genetic algorithm
for scheduling in grids. In 2010 IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW). IEEE, pp. 1–8.

[13] Sadashiv, N. and Kumar, S. M. D. 2011. Cluster, grid and cloud computing: A detailed comparison. In
2011 6th International Conference on Computer Science Education (ICCSE). IEEE, pp. 477–482.

[14] Shi, Y. et al. 2001. Particle swarm optimization: developments, applications and resources. In Proceedings
of the 2001 Congress on Evolutionary Computation. Cat. No. 01TH8546, IEEE, Vol 1, pp. 81–86.

[15] Wu, M.-Y. and Shu, W. 2001. A high-performance mapping algorithm for heterogeneous computing sys-
tems. In Proceedings 15th International Parallel and Distributed Processing Symposium (IPDPS 2001).
IEEE, No. 6964466. DOI: 10.1109/IPDPS.2001.925020

[16] Xhafa, F., Alba, E., Dorronsoro, B., Duran, B., and Abraham, A. 2008. Efficient batch job scheduling
in grids using cellular memetic algorithms. In Metaheuristics for Scheduling in Distributed Computing
Environments. Springer, 273–299.

InterRC: An Inter-Resources Collaboration Heuristic for Scheduling Independent Tasks…

MENDEL — Soft Computing Journal, Volume 25, No.1, June 2019, Brno, Czech RepublicX

188

