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Abstract: When analyzing environmental or chemical data, it is often necessary to deal with left-censored
observations. Since the distribution of the observed variable is often asymmetric, the exponential or the Weibull
distribution can be used. This paper summarizes statistical model of a multiply left-censored Weibull distribution,
and estimation of its parameters and their variances using the expected Fisher information matrix. Since in
many situations the Weibull distribution is unnecessarily complicated for data modelling, statistical tests (the
Lagrange multiplier test, the likelihood ratio test, the Wald test) for assessing suitability of replacement of
the censored Weibull distribution with the exponential submodel are introduced and their power functions are
analyzed using simulations.
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1 Introduction

Censored data occurs frequently in many application areas. When experimental units may not be observed for
the full time before failure, the right censoring is considered. When a substance or an attribute being measured
is either absent or exists at such a low level that it is not present above the detection limit of a measuring
device, the left censoring is used. The right censoring is typically used in survival data analyses [11, 12], and
the left censoring is used in analyses of environmental and/or chemical data [10]. Both censoring types can be
divided into two categories with regard to the observation period of experimental units or a detection limit of
a measuring device. If the detection limit is fixed, the censoring is called Type I censoring or time censoring.
In such a situation, the number of censored experimental units is a random variable. In case the number of
censored units is fixed, the censoring is called Type II censoring or failure censoring.

When analyzing chemical or environmental data, Type I left-censored data with more than one detection
limit is usually present. Therefore, detection limits d1 < · · · < dk, k > 1, are often considered and we talk about
multiply left-censored samples [2, 8]. In such a case only observations above the highest detection limit dk and
the number of observations under the remaining detection limits are available. When dealing with chemical
data, two detection limits (a limit of detection and a limit of quantification) are usually present. In such cases,
we talk about doubly left-censored data [1, 7].

This paper focuses on Type I multiply left-censored samples. Since interest in statistical analysis of censored
data, especially with asymmetric or highly skewed distributions, has increased lately [3, 4, 13, 17, 18], attention
will be paid to the censored Weibull distribution. However, despite the fact that the Weibull distribution is very
flexible and can be widely used, it can sometimes be unnecessarily complicated for modelling of given data. In
such a situation, a much simpler model of the censored exponential distribution (which is a special case of the
Weibull distribution) can be utilized [7]. Therefore, a statistical tests for assessing suitability of replacing the
Weibull distribution with the exponential distribution will be described and their power will be analyzed.

The following section summarizes a statistical model of the multiply left-censored Weibull distribution,
estimation of its parameters using the method of maximum likelihood (ML), and the expected Fisher information
matrix (FIM) which can be used for estimating the variability of the estimated parameters. In section three,
asymptotic tests with nuisance parameters (the Lagrange multiplier test, the likelihood ratio test, the Wald
test) for testing suitability of replacement of the censored Weibull distribution with the exponential submodel
are introduced, and their power functions considering various sample sizes, censoring schemes and levels of
censoring are analyzed using simulations.
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 2 Multiply Left-Censored Weibull Distribution

Let X1, . . . , Xn be a type I multiply left-censored random sample from the Weibull distribution with scale
parameter λ > 0, shape parameter τ > 0, cumulative distribution function

F (x, λ, τ) =

{
1− exp

[
−
(
x
λ

)τ ]
for x ≥ 0,

0 for x < 0,

and probability density function

f(x, λ, τ) =

{
τ
λτ x

τ−1 exp
[
−
(
x
λ

)τ ]
for x ≥ 0,

0 for x < 0.

Let X(1), . . . , X(n) be the ordered sample of X1, . . . , Xn. Moreover, Ni is the number of observations in the
interval (di−1, di〉, and N0 is the number of uncensored observations X(n−N0+1), . . . , X(n). In order to simplify
the mathematical notation, in all the formulas, we put d0 = 0 and ln(d0) = 0.

The log-likelihood function of the multiply left-censored sample is (see [5])

l(λ, τ,N0, . . . , Nk, X(n−N0+1), . . . , X(n)) = log

(
n!

N1! . . . Nk!

)
+

k∑

i=1

Ni log [F (di, λ, τ)− F (di−1, λ, τ)]

+

n∑

i=n−N0+1

log
[
f(X(i))

]
.

(1)

The ML estimates λ̂, τ̂ of parameters λ, τ were estimated by maximization of the log-likelihood function (1)
using the Nelder-Mead simplex algorithm [14].

Since (see [15])

√
n(λ̂− λ)

A
∼ N(0, J−1

11 ),
√
n(τ̂ − τ)

A
∼ N(0, J−1

22 ),

variability of the estimators λ̂, τ̂ can be calculated from the expected FIM
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 and, considering Euler’s constant γe

.
= 0.57722,

E1 = nλτ
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More details and the derivation of FIM (2) can be found in [6].

3 Reduction of the Weibull distribution to the Exponential Submodel

There are situations when the Weibull distribution is too complicated for modelling of given data. The problem
is that there can be numerical difficulties with estimation of shape parameter τ of the Weibull distribution.
However, if τ = 1, then the model of Weibull distribution can be reduced to the exponential submodel where
all the calculations are much easier. To assess suitability of replacement of the censored Weibull distribution
with the exponential distribution, asymptotic tests with nuisance parameters can be used [16], specifically the
Lagrange multiplier (LM) test, the Wald (W) test and the likelihood ratio (LR) test. Next, particular test
statistics will be derived and their power functions will be analyzed using simulations.

3.1 Asymptotic Tests with Nuisance Parameters

The null hypothesis H0 is expressed as a restriction on shape parameter τ of the censored Weibull distribution.
Specifically, H0: τ = 1 is set against the alternative H1: τ 6= 1, and λ is a nuisance parameter. Therefore, in
case the null hypothesis is not rejected at a specified significance level α, the censored exponential distribution
can be used instead of the Weibull distribution.

The test statistics are

LM =
U2
1 (λ̃, 1)

Jn,22.1(λ̃, 1)
,

W = (τ̂ − 1)2Jn,22.1(λ̂, τ̂),
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]
,

(3)
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+
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(i) lnX(i)

is the score function and Jn,22.1(λ, τ) = n(J22 − J21J
−1
11 J12) is a transformation of the expected FIM (2). The

parameters estimated under the null hypothesis are denoted by a tilde, and those estimated under the alternative
are denoted by a hat. The test statistics LM , W , LR have asymptotically χ2 distribution with one degree of
freedom [16].
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3.2 Power of the Tests

Performance of the above mentioned test statistics (3) was assessed by means of simulated power functions
(10,000 repetitions). Since the majority of researchers deal with censored data with one or two detection limits,
two levels of censoring were considered. Specifically, single censoring with one detection limit, and double
censoring with two detection limits. The detection limits di, i = 1, . . . , k, k = 1, 2, were selected as quantiles of
Weibull distribution using equations qi = F (di, λ, τ), where qi are given in Table 1. For example, the q1 given
in column ”Double” in Table 1 denotes the proportion of doubly censored observations, and describes the given
censoring scheme. The censoring scheme ”Low” represents the smallest proportion (10%) of censored data, and
the censoring scheme ”High” represents the largest proportion (90%) of censored data in case of singly and
doubly censored samples. Since λ is the scale parameter, and ML estimators are scale invariant, we take λ = 1
without loss of generality. This fact was also verified using simulations. The power functions were calculated
for singly and doubly left-censored samples with size n = 10, 20, 30, 50, 100.

Table 1: Quantiles for determination of detection limit values considering single and double censoring and
various censoring schemes.

Single Double
Censoring q1 q1 q2

Low 0.10 0.05 0.10
Medium 0.50 0.25 0.50
High 0.90 0.45 0.90

In case of double censoring, all the test statistics perform poorly for small sample sizes (n < 30; not shown in
figures). Furthermore, all the test statistics perform very similarly (see Fig. 1) for sample size n = 100. Overall,
LR test statistic has the highest and LM test statistic the lowest power. When comparing the power functions
considering various censoring schemes, Fig. 2 shows what difference between power functions can be expected
in case of LR test statistic. Similar behavior was observed for test statistics LM and W (not shown in figures).
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Figure 1: Power functions for test statistics (3), double censoring and medium number of censored values.

In case of single censoring, all the test statistics perform poorly for small sample sizes (n < 30; not shown
in figures). Moreover, when the number of censored values is high, all the tests are practically unusable even
for sample size n = 100 (see Fig. 3). All the test statistics perform very similarly (see Fig. 4) for sample size
n = 100 and low/medium number of censored values. Furthermore, LR test statistic has the highest and LM
test statistic the lowest power.

4 Conclusion

This paper dealt with statistical tests for assessing possibility of replacement of the censored Weibull distribution
with the exponential submodel in order to obtain numerically less complicated and still sufficient model for de-
scribing censored data. For estimation of parameters of the censored Weibull distribution, method of maximum
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Figure 2: Power functions for test statistic LR, double censoring and a various number of censored values.
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Figure 3: Power functions for test statistic LR, single censoring and a various number of censored values.
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Figure 4: Power functions for test statistics (3), single censoring and medium number of censored values.

likelihood was used. Moreover, the expected Fisher information matrix for calculating variances of the estimated
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 parameters was presented. Three test statistics for testing suitability of reduction of the Weibull distribution
to the exponential distribution were described and their performance was assessed using simulations.

It was found out that performance of all the test statistics is very similar for sample size n = 100 considering
single and double censoring. Besides that, LR test statistic has the highest power. However, in case of single
censoring and a high number of censored values, all the tests perform poorly and are virtually unusable. For
example, when τ = 1.3, the rejection probability of the null hypothesis (τ = 1) is 0.13 considering LR test
statistic and sample size n = 100. All the procedures used were implemented in Matlab environment (version
R2015a), and are available upon request.
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[17] Shoari, N., Dubé, J.-S., Chenouri, S.: Estimating the mean and standard deviation of environmental
data with below detection limit observations: Considering highly skewed data and model misspecification.
Chemosphere 138, 599–608 (2015).
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