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Brno University of Technology
Faculty of Mechanical Engineering

Technická 2, Brno 616 69
Czech Republic

{hrdina, navrat.a, vasik, matousek}@fme.vutbr.cz

Abstract: We describe the local control of a (6–8)–link snake like robot endowed with omnidirectional wheels on
two links (head and tail). All calculations including the position, direct kinematics, differential kinematics and
inverse kinematics are described in the terms of CGA only.
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1 Introduction

Let a non–holonomic system be described by the appropriate dynamic (Pfaff) system of ODEs, which defines
the vectors of admissible motion directions (w.r.t. the controlling parameters). These vectors together with
the Lie bracket operation generate a Lie algebra corresponding to the original system. Consequently, a non–
holonomic system is said to be locally controllable if the linear span of its appropriate Lie algebra generators is
of the same dimension as the configuration space (Rachevsky–Chow Theorem). Furthermore, while generating
the Lie algebra, one obtains a natural filtration (w.r.t. the number of Lie bracket applications). The elements
of the higher filtration parts correspond to the motions, which can not be realized locally but are necessary for
local controllability. A general interpretation of such motions is crucial for local controllability description and
realization. The main goal of the talk is to employ an advanced mathematical tool of the Conformal Geometric
Algebra (CGA) in the snake robot modeling in order to achieve the optimal control of particular solutions.

2 Conformal geometric algebra – CGA

Let R4,1 denote a vector space R5 equipped with the scalar product of signature (4, 1), let Cl(4, 1) denote the cor-
responding Clifford algebra, i.e. a free, associative and distributive algebra as a span of the set {e1, e2, e3, e+, e−}
such that the following identities are satisfied:

e2
1 = e2

2 = e2
3 = e2

+ = 1, e2
− = −1,

eiej = −ejei, i 6= j, i, j ∈ {1, 2, 3,+,−}.

In this case, we get 25 = 32–dimensional vector space. Let us note that the norm in R4,1 can be understood as
a vector square x2 = ‖x‖2. Now, we define two additional products on R4,1 based on the geometric one for any
u, v ∈ R4,1, dot product and wedge product, respectively:

u · v =
1

2
(uv + vu), u ∧ v =

1

2
(uv − vu)

and thus the formula for the geometric product can be derived as

uv = u · v + u ∧ v.

Generally, the wedge (outer) product of two basis blades Ei and Ej , with k = gr(Ei), l = gr(Ej) is defined as

Ei ∧ Ej := 〈EiEj〉k+l

and the dot (inner) product is defined as

Ei · Ej =

{
〈EiEj〉|k−l| i, j, > 0

0 i = 0 or j = 0,
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 where gr(E) is a grade of the basis blade E and 〈 〉k is the grade projection into the blade of the grade k.
To work with CGA effectively, we have to define a new basis of R4,1 as a set {e1, e2, e3, e0, e∞} such that
e0 = 1

2 (e− + e+) and e∞ = (e− − e+). Consequently, the following properties hold:

e2
0 = 0, e2

∞ = 0, e∞e0 = −1− e− ∧ e+, e0e∞ = −1 + e− ∧ e+,

e∞e0 = −e0e∞ − 2.

In CGA, we can represent the basis geometric elements by the following multivectors from Cl(4, 1):

point x Q = x+
1

2
x2e∞ + e0

sphere of radius
r and center C

 S = C − 1

2
r2e∞

point pair Q1, Q2  P = Q1 ∧Q2.

In CGA (in fact in GA generally), any transformation of the element O is realized by conjugation

O 7→MOM̃

where M is the appropriate multivector from Cl(4, 1). For instance, the translation in the direction t = t1e1 +
t2e2 + t3e3 is realized by the multivector

M := T = 1− 1

2
te∞

and the rotation around the axis L by angle φ is realized by the multivector

M := R = cos
φ

2
− L sin

φ

2

where L = a1e2e3 + a2e1e3 + a3e1e2. For more information refer to books [2, 8] or papers [3, 4].

3 The flag structure

The snake robot described in this paper consists of 6–8 rigid links of constant length 2 interconnected by
motorized joints. Except for the first and the last, to each line, in the center of mass, a pair of wheels is
attached to provide an important snake-like property that the ground friction in the direction perpendicular
to the link is considerably higher than the friction of a simple forward move. In particular, this prevents
the slipping sideways. To determine the actual position of a snake robot we need the set of 8–10 generalized
coordinates

q = (x, y, θ,Φi, i ∈ {1, . . . , N}) ∈M, (1)

where N ∈ {5, 6, 7} and M = R2 × (S1)N+1 which describes the configuration of the snake robot.
The control theory generally leads to a nonholonomic system

q̇ =
m∑
i=1

uiXi(q), q ∈M,

whereXi are vector fields onM , wherem ∈ N,m < dimM . In particular, the controllability of the nonholonomic
system is fully characterized by the properties of the Lie algebra generated by X1, ..., Xm. We define

∆1 = span{X1, . . . , Xm}

and ∆s+1 = ∆s + [∆1,∆s], where [∆1,∆s] = span{[X,Y ] : X ∈ ∆1, Y ∈ ∆s}. The Lie algebra ∆̄ generated by
X1, ..., Xm is defined as

∆̄ =
⋃
s≥1

∆s.

Let us note that our system satisfies Chow’s condition, i.e. ∆̄(q) = TqM , ∀q ∈ M and the vectors at q ∈ M
form a flag of subspaces of TqM , that is

∆1(q) ⊂ ∆2(q) ⊂ · · · ⊂ ∆r−1(q) ⊂ ∆r(q) = TqM,
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 where r = r(p) is so–called degree of nonholonomy at p. Set ni(q) = dim ∆i(q). The r–tuple of integers
(n1(q), . . . , nr(q)) is called the growth vector at q. In our cases the growth vectors are

(4, 5, 7, 8), (4, 5, 7, 9), (4, 5, 7, 10)

and the degree of nonholonomy is 4. The structure of the flag may also be described by another sequence of
integers. We define the weights at q, wi = wi(q), i = 1, . . . ,m, by setting wj = s if ns−1(q) < j ≤ ns(q), where
n0 = 0. In our cases the weights are

(1, 1, 1, 1, 2, 3, 3, 4), (1, 1, 1, 1, 2, 3, 3, 4, 4), (1, 1, 1, 1, 2, 3, 3, 4, 4, 4).

As the first and the last link are endowed with the omnidirectional wheels and do not affect the control,
the controlling Lie algebra is of a special form, particularly it contains a two–dimensional center Z. The flag
structures on factor space ∆̄/Z are characterized by the growth vectors

(2, 3, 5, 6), (2, 3, 5, 7), (2, 3, 5, 8),

where the last example is of full dimension as the corresponding P. Hall basis contains exactly 8 elements. As
a result, we discuss all possibilities with the degree of nonholonomy equal to 4 after the center factorisation.

4 Kinematics

Note that a fixed coordinate system (x, y) is attached. The points pi := (xi, yi), denote the centers of mass of
each link. To describe the robotic snake we use as a central object the set of point pairs

(P0, P2, P4, · · · , PN )

where P0 = Q0 ∧ Q1, P1 = Q1 ∧ Q2 and PN = QN ∧ QN+1, where Qi are the joint points and head and tail
points. Consequently, the kinematic equations can be assessed and if we consider the projections

Qi = −
√
Pi · Pi + Pi
e∞ · Pi

, Qi+1 =

√
Pi · Pi + Pi
e∞ · Pi

,

we are able to express the coordinates of every point from any point pair. The coordinates of particular position
of link centers are the following

pi = Pie∞P̃i, s.t. Pi = RΦi
· · ·RΦ1

RθTx,yPi,0T̃x,yR̃θR̃Φ1
· · · R̃Φi

and, for the robotic snake initial position x = y = θ = Φi = 0, the appropriate point pairs are denoted by Pi,0
and calculated directly, e.g.

P1,0 = (e0) ∧ (2e1 + 2e∞ + e0) = 2e0e1 − 2e+e−,

P2,0 = (2e1 + 2e∞ + e0) ∧ (4e1 + 8e∞ + e0) = 2e0e1 + 8e1e∞ − 6e+e−,

P3,0 = (4e1 + 8e∞ + e0) ∧ (6e1 + 18e∞ + e0) = 2e0e1 + 24e1e∞ − 10e+e−

...

Now, the transformations corresponding to the generalized coordinates can be written as

Tx,y = 1− 1

2
(xe1 + ye2)e∞,

TQi = 1− 1

2
Qie∞,

R0 = cos
θ

2
− L0 sin

θ

2
, where L0 = Tx,ye1e2T̃x,y,

Ri = cos
Φ1

2
− Li sin

Φ1

2
, where Li = TQi

e1e2T̃Qi
.

The direct kinematics for the snake robot is obtained similarly as the kinematics for serial robot arms [10]. In
general, it is given by a succession of generalised rotations Ri and it is valid for all geometric objects, including
point pairs. A point pair P in a general position is computed from its initial position P0 as follows

P =
n∏
i=1

RiP0

n∏
i=1

R̃n−i+1. (2)
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 5 Differential kinematics

Unlike the fixed serial robot arms, we allow Ri to be also a translation. We view translations as degenerate
rotations. Then the differential kinematics is expressed by means of the total differential as follows

dP =
n∑
j=1

∂qj (
n∏
i=1

RiP0

n∏
i=1

R̃n−i+1)dqj .

Theorem. Let c be a centre of a sphere S (including a point pair as a 0D–sphere) whose final position is given
by the kinematic chain (2). Then the differential kinematics of c is given by

ċ =
n∑
j=1

[c · L′j ]dqj .

Proof. See [4].

Concretly, we obtain the system

ṗ1 = [p1 · e1e∞]ẋ+ [p1 · e2e∞]ẏ + [p1 · L0]θ̇,

ṗi = [p2 · e1e∞]ẋ+ [p2 · e2e∞]ẏ + [pi · L0]θ̇ + [p2 · L1]Φ̇1 + · · ·+ [p2 · L1]Φ̇i,

which in the matrix notation is of the form

ṗ = Jq̇, (3)

where q are our coordinates (1) and J = (jkl) is a matrix with the elements defined by scalar products of points
and axes

ji1 = [pi · e1e∞], ji2 = [pi · e2e∞],

jik = [pi · Lk−3] for 3 ≤ k < 3 + i,

jik = 0 for 3 + i ≤ k.

As the wheels do not slip to the side direction, the velocity constraint condition is satisfied for each link i and
in terms of CGA can be written as

ṗi ∧ Pi ∧ e∞ = 0. (4)

Thus if we substitute (3) in (4), we obtain a system of linear ODEs, which has a simple Pfaff matrix form

Aq̇ = 0, (5)

where A = (aij) is a matrix with the elements defined by

aik = jik ∧ Pi ∧ e∞. (6)

Note that the enteries of A are multiples of e1e2e+e−. Taking the conjugate and multiplying with e3 A can be
considered simply as a matrix over the field of functions. For example, the solution of this system with respect
to θ̇ parameterized by ẋ, ẏ, (i.e. ẋ = t1 and ẏ = t2) is of the form

θ̇ = − [p1 · e1e∞] ∧ P1 ∧ e∞
[p1 · L0] ∧ P1 ∧ e∞

t1 −
[p1 · e2e∞] ∧ P1 ∧ e∞
[p1 · L0] ∧ P1 ∧ e∞

t2.

If we denote by e∗ the dual to e in CGA which is realized by the multiplication of the inverse unit pseudoscalar,
the straightforward computation leads to [p1 · L0] ∧ P1 ∧ e∞ = 2e∗3, i.e. the solution always exists, because
([p1 · L0] ∧ P1 ∧ e∞)−1 = − 1

2e
∗
3.

The singular posture of the system is in the case that the wheel axes, i.e. lines perpendicular to each link
containing the link center point, intersect in precisely one point or are parallel, see Figure 2. In our setting
this is one condition only because in CGA the parallel lines intersect in exactly one point which is e∞. It is
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 easy to see that this happens in such case that all joints lie on a single circle, i.e. in CGA they satisfy a simple
condition

Q0 ∧Q1 ∧Q2 ∧Qi = 0, ∀i ∈ {3, ..., N + 1}. (7)

Finally, note that the non–singular solution forms a 2–dimensional distribution which can be parametrized e.g.
as follows:

q̇ = G

(
t1
t2

)
, (8)

where G = (gij) is a control matrix. Thus if we consider the snake robot configuration space with coordinates
(1) as manifold M , the solution above forms a set of vector fields {g1, g2, g3, g4}, such that g3, g4 ∈ Z.

It is clear, that the space span{g1, g2} determines the set of accessible spatial velocity vectors and thus,
taking into account the vector field flows exp(tg1), exp(tg2), the possible trajectories of the snake robot. On
the other hand, due to non–commutativity of exp(tg1), exp(tg2), the robot can move even along the flow of the
Lie bracket by means of the composition

exp(−tg2) ◦ exp(−tg1) ◦ exp(tg2) ◦ exp(tg1).

Extending this idea, the space Dq of all movement directions at the point q is given by all possible Lie brackets
of g1(q) and g2(q) and the resulting vector fields. From the geometric control theory point of view, it is quite
necessary that the dimension of Dq is equal to the dimension of the tangent space TqM, q ∈ M, which in our
case is 6,7 and 8, respectively. Note that this is the condition on the model local controllability given by the
Rashevsky–Chow Theorem.

6 Notes on the inverse kinematics

Note that the geometric meaning of the inner product of two conformal vectors U and V is the following.

Table 1: Geometric meaning of the inner product

U · V Plane Sphere Point
Plane Angle between planes Euclidean distance from center Euclidean distance
Sphere Euclidean distance from center Distance measure Distance measure
point Euclidean distance Distance measure Euclidean distance

In our case, we have the set of point pairs {P0, . . . , PN} which determines the mechanism configuration
uniquely. Using the notation of Section 4, the set of the admissible points {Q0, . . . , QN+1} with respect the set
of point pairs {P0, . . . , PN} has to satisfy the equations

Qi ·Qi+1 = 2, (9)

where i ∈ {0, . . . , N}. A point in the configuration space M is determined by the following direct computation:

x = Q0 · e1,

y = Q0 · e2,

cos θ = (P1 ∧ e∞) · (e0 ∧ e1 ∧ e∞),

cosφi = (Pi ∧ e∞) · (Pi+1 ∧ e∞).

Various inverse problems can be solved by these equitations. For instance assume the position of the first
and the last link is fixed (as it does not affect the control process) and all possible resulting configurations
are computed. We shall use the property of the scalar product of a point Q and a sphere S that the number√

2|Q · S| determines the Euclidean distance of Q and the point of tangency on S appropriate to the tangent
containing Q. To avoid the singular initial positions we suggest to employ the assumption for small ε ∈ R

2− ε ≤ Qi · (Qi+2 − 2e∞) ≤ 2 + ε,

which reads that the angel φi is in the vicinity of π
2 or less restrictive assumption

sgn((Pi ∧ e∞) · (Pi+1 ∧ e∞)) = −sgn((Pi ∧ e∞) · (Pi+1 ∧ e∞))

which reads that the angle signum is changing in each joint.
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