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Abstract: The motivation for this work was to qualitatively describe the distribution of Au nanoparticles
on the surface of a semiconductor. We discuss suitable mathematical characteristics which allow the uniform
distribution to be distinguished from the distribution affected by any physical phenomenon, i.e. by the repulsive
force between electrically charged particles or by the influence of properties of the surface. We identify Voronoi
decomposition and a statistical analysis of Voronoi cell properties as a suitable tool for this purpose.
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1 Introduction

Let us consider an image created by electron microscope of the specimen whose surface is more or less covered by
nanoparticles. For the detection of particles in the image, a threshold method is used [2]. After the detection, the
particles which touch each other are separated using the method developed by Pavel Štarha [3, 4]. The method
is based on the geometric properties of the object of interest and on the assumptions made regarding the shape
of the elementary objects. Then, the centroid is computed for every particle and the Voronoi decomposition is
done.

2 Voronoi decomposition and moment characteristics

A Voronoi diagram is a partitioning of a plane into regions based on distance to points in a specific subset of the
plane. In our case the set of points (called generators) are centroids of nanoparticles. For each generator there
is a corresponding region (called Voronoi cell) consisting of all points closer to that generator than to any other.
All the image of surface with nanoparticles is decomposed into Voronoi cells, see Fig. 1. Then the size of areas
of these Voronoi cells can be statistically analyzed to determine whether the nanoparticles on the surface are
distributed with 2D uniform distribution or exhibit a statistically significant deviation from this distribution.

The size of areas of the Voronoi cells will be our field of interest for following statistical analysis based on
the moment characteristics up to third order. Let us denote p′(Di) the size of area of Voronoi cell Di in pixels.
Normalized size of area of Di is defined as

p(Di) =
p′(Di)

1
n

n∑
j=1

p′(Dj)
(1)

where n is number of particles in the image. Standard deviation σ and skewness ψ of the normalized size of
area is

σ =

√√√√ 1

n− 1

n∑
i=1

(p(Di)− 1)
2
, ψ =

1

σ3n

n∑
i=1

(p(Di)− 1)
3
. (2)
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Figure 1: Real-image of the semiconductor GaAs which was immersed in a solution of amino acid Lysine for
30 s and in a solution of 20 nm Au nanoparticles for 10 min created by electron microscope (on the left) and
its Voronoi decomposition (on the right). The real size of the image is 1× 1 µm.

3 Properties of the Voronoi decomposition for uniform distribution

Since there is no available theory for analyzing moment characteristics for 2D uniform distribution of generators
of Voronoi decomposition, we will solve this problem by computer simulation. For this, the Borland Delphi
was used. In a uniform distribution, 125, 250, 500, 1000, 2000 and 4000 particles were placed randomly
into the image. For each number set, 10000 simulations of Voronoi decomposition were carried out and, for
each simulation, moment characteristics were computed. From this data, point estimations of the standard
deviation σ and the skewness ψ were computed (see Table 1).

Table 1: Point estimations of the parameters σ, ψ

n σ ψ
125 0.5262 0.8830
250 0.5294 0.9572
500 0.5311 0.9933
1000 0.5318 1.0121
2000 0.5321 1.0126
4000 0.5331 1.0043

The main problem with formulation of the hypothesis that particles are uniformly distributed based on
knowledge of σ and ψ for the experimental images, is that we must consider 2 quantities at the same time. We
have to consider vector (σ, ψ) whose components are not independent (both of them are computed by arithmetic
mean) and, also, it is known that for random vector there is no analogical theory of the interval estimation of
one observed value (because in R2 ordering doesn’t exist).

We would like to find out a method for testing statistical hypothesis of particles on the surface which have
uniform distribution.

4 Histograms of experimental data and their representation

For the next analysis of properties of Voronoi decomposition obtained by the set of generators with 2D
uniform distribution of the particles, the histograms of vector (σ,ψ) are created for number of particles
n = 125, 250, 500, 1000, 2000, 4000. Those histograms are represented as digital images, where coordi-
nates of the pixels in the image are given by bins of vector (σ, ψ) and frequency of each bin is represented by
the pixel value, see Fig. 2. The number of simulations is 10000. Very important is the choice of number of bins
in the histogram. The aim is to obtain 400 (the number was chosen on the basis of simulations) non-empty
bins of histogram so that we get continuous sets of pixels by the threshold method applied on the histogram.
The shape of the histograms in images in Fig. 2 is similar to that of an ellipse. Therefore, the ellipse (in our
case it is a Legendre ellipse [1]) was chosen for the approximation of the set (this set we denote G) to which the
vector (σ, ψ) belongs with specified probability τ . If we find the parameters of the ellipse, we can test that the
distribution of particles is uniform on the (1− τ) level of significance.
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Figure 2: Histograms H125, H250, H500 (in the upper part) and histograms H1000, H2000, H4000 (in the lower
part). Size of each rectangle represents interval σ ∈ 〈0, 1〉 in horizontal direction and ψ ∈ 〈0, 2〉 in vertical
direction. Histogram negatives are shown for clarity, i.e. empty bin of the histogram has white color and the
bin of maximum frequencies is black. For better visualization on the paper, the pictures were cropped but for
mathematical analysis we used vertical range ψ ∈ 〈0, 4〉. The optimization of the number of histogram bins
is clear from the images. Although histograms have a significantly different number of bins, the number of
non-empty bins is the same (400).

The Legendre ellipse is an ellipse with the center in the centroid and with the same geometrical moments
up to the second order as the original area G. Definition of the geometric moments of the object G is

mi,j(G) =

∫∫
G

σiψj dσ dψ, (3)

where i, j = 0, 1, 2, . . . and i + j denotes order of the moment. Then, the center of ellipse S = [σS , ψS ] in the
Cartesian coordinate system σψ is computed as

S =

[
m1,0(G)

m0,0(G)
,
m0,1(G)

m0,0(G)

]
. (4)

Orientation of major and minor axis of the ellipse is derived from central moments [1]

mi,j(G) =

∫∫
G

(σ − σS)i(ψ − ψS)j dσ dψ (5)
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 and the directions of semi-axes of the ellipse are given by angles

ϕk =
1

2
arctg

2m1,1(G)

m2,0(G)−m0,2(G)
+
kπ

2
, k = 0, 1, 2, 3. (6)

We will continue in the text with the simplified notation of the angle ϕ for the major axis. If we declare
a coordinate system σψ as the basic coordinate system, the new coordinate system σ′ψ′ with the origin in S
and axis σ′ in the direction of major axis of ellipse and ψ′ given by direction of the minor axis of the ellipse
we will denote as the principal coordinate system σ′ψ′. Let us denote central moments of the object G in the
principal coordinate system σ′ψ′ by m?

i,j(G). Then, for the semi-major axis a and for the semi-minor axis b it
holds that

a = 2
√
m?

2,0(G), b = 2
√
m?

0,2(G) (7)

and for elongation ε of the Legendre ellipse of the object G it holds that

ε = log2

a

b
. (8)

You can see parameters of the Legendre ellipse obtained from 10000 simulations in Table 2 (processing was done
using the software SOFO ACC 6.0.) and the sample case of Legendre ellipse in Fig. 3.

Table 2: Parameters of the Legendre ellipse derived from images of the histograms H125, H250, . . . H4000.

n lnn σS ψS ϕ ε
125 4.82831 0.52594 0.87935 84.28◦ 2.809
250 5.52146 0.52926 0.95501 84.74◦ 2.978
500 6.21640 0.53101 0.99123 85.00◦ 3.147
1000 6.90775 0.53168 1.01056 85.22◦ 3.241
2000 7.60090 0.53176 1.01041 85.73◦ 3.259
4000 8.29404 0.53268 1.00191 85.81◦ 3.265

Figure 3: The Legendre ellipse derived from the image of the histogram H1000 for probability τ = 0.99 (see
Section 5). In the picture there is drawn a basic coordinate system σψ and also the principal coordinate
system σ′ψ′.

5 Optimization of the parameters of the Legendre ellipse

We know the center S, elongation ε and orientation of the Legendre ellipse given by angle ϕ at the moment. The
length of the semi-major axis a and semi-minor axis b can be computed so that for a given number of particles n
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 is the probability that the parameters σ and ψ of the Voronoi decomposition for the uniform distribution of
particles belong into ellipse is equal to the specified probability τ .

Let us denote L(a, b) Legendre ellipse with the length of semi-major axis a and semi-minor axis b and let us
denote q = τm, where m = 10000 is the number of simulations. We define the set

Q(a, b) = {i ∈ {1, 2, . . .m} | [σi, ψi] ∈ L(a, b)}, (9)

where [σi, ψi] are the values obtained by ith simulation. Let us denote |Q(a, b)| the number of elements of this
set (it is the number of elements which belong into Legendre ellipse L(a, b) within m simulations). The lengths
a and b were computed iteratively in the sense of the bisection method. The idea of this process is that we
choose initial lower and upper estimates for the lengths a and b (notation for ith estimations are ad,i, ah,i, bd,i
and bh,i) and initial estimates of |Q(ad,1, bd,1)| and |Q(ah,1, bh,1)|. By the bisection method we compute

ad,i+1 =

{
ad,i pro |Q(ac,i, bc,i)| > q
ac,i pro |Q(ac,i, bc,i)| ≤ q

, ah,i+1 =

{
ah,i pro |Q(ac,i, bc,i)| ≤ q
ac,i pro |Q(ac,i, bc,i)| > q,

(10)

where

ac,i =
ad,i + ah,i

2
(11)

and our stop criterium is
|Q(ac,i+1, bc,i+1)| = |Q(ac,i, bc,i)|, (12)

i.e. we will stop the iteration if the change in the lengths a and b does not lead to a more accurate result.
In order to determine whether [σi, ψi] belongs L(a, b), we come out of the focal features of the ellipse.
In this way, the a and b values were obtained depending on the number of particles n in the image and the
specified probabilities τ . Three probabilities were chosen τ = 0.90, 0.95, 0.99. An overview of the results is
found in Table 3.

Table 3: Lengths of the Legendre ellipse semi-axes a, b depending on the number of particles n in the image
and probability τ .

τ n lnn a b
0.90 125 4.82831 0.71289 0.101688
0.90 250 5.52146 0.55664 0.070748
0.90 500 6.21460 0.41992 0.047234
0.90 1000 6.90775 0.32226 0.034266
0.90 2000 7.60090 0.22460 0.023449
0.90 4000 8.29404 0.16601 0.017232
0.95 125 4.82831 0.83007 0.118404
0.95 250 5.52146 0.65429 0.083160
0.95 500 6.21460 0.47851 0.053825
0.95 1000 6.90775 0.36132 0.038420
0.95 2000 7.60090 0.26367 0.027527
0.95 4000 8.29404 0.18554 0.019260
0.99 125 4.82831 1.20117 0.171337
0.99 250 5.52146 0.96679 0.122878
0.99 500 6.21460 0.69335 0.077992
0.99 1000 6.90775 0.49804 0.052957
0.99 2000 7.60090 0.34179 0.035684
0.99 4000 8.29404 0.22460 0.023315

6 Calculation of the parameters of the Legendre ellipse for general number of
particles

The next step in the generalizing method for determining the parameters of the Legendre ellipse is to find an
algorithm for the general number of particles. We use four parameter logistics function Λ (4PL function) for
the approximation of all parameters of the Legendre ellipse in the form

Λ(x) = D +
A−D

1 +
( x
C

)B , (13)
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 where x = lnn and n is the number of the particles into the image. Based on the parameters in Table 2, ap-
proximations were computed using 4PL functions. The result is the coefficients A,B,C,D of the 4PL functions,
which are listed in Table 4 and the graphs corresponding to the approximating 4PL functions are shown in
Fig. 4 and 5.

Table 4: Parameters of the 4PL function Λ(x), x = lnn for approximation of parameters of the Legendre ellipse.

A B C D
σS -381.0125 3.774573 0.2760439 0.5339951
ψS 0.8391545 13.76506 5.217051 1.010437
ϕ 43.10296 0.09565836 100239.3 170.9187
ε 2.738589 12.32581 5.621842 3.272467

lnn

σS

5 6 7 8

0.526

0.528

0.530

0.532

5 6 7 8

0.90

0.95
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ψS

Figure 4: The graphs of the 4PL functions Λ(x), x = lnn for the coordinates of the center of the Legendre
ellipse S[σS , ψS ].
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Figure 5: The graphs of the 4PL functions Λ(x), x = lnn for the major axes slope described by the angle ϕ
and elongation ε.

We computed the 4PL functions Λ(x), x = lnn for an approximation of the lengths of major-axes a and
minor-axes b using parameters in Table 3, for probabilities τ = 0.90, 0.95, 0.99. The graphs of these functions
are in Fig. 6.

7 Testing of hypothesis that the distribution of the particles in the image is uni-
form.

We will test the hypothesis that real-image of particle distribution has a 2D uniform distribution, i.e. that it is
not possible to statistically demonstrate the influence of mutual relationship between particles or surface effect
on particle distribution. We select the level of significance (1− τ) (probability that the hypothesis holds and we
will reject it) and construct the Legendre ellipse L for probability τ . We calculate the parameters σ and ψ for
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Figure 6: The graphs of the 4PL functions Λ(x), x = lnn for the length of semi-major axes a and semi-minor
axes b. For τ = 0.90 by the solid lines, for τ = 0.95 by the dashed lines and for τ = 0.99 by the dotted line.

the Voronoi decomposition of the test image. We accept the hypothesis in the case [σ, ψ] ∈ L. All other cases,
we will reject it. There is graphical representation of the test of the hypothesis on (1−0.95) level of significance
in Fig. 7. The hypothesis is rejected in this case because [σ, ψ] doesn’t belong to the Legendre ellipse.

σ

ψ

1.00.5
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Figure 7: Voronoi decomposition of the real-image with n = 920 nanoparticles created by electron microscope
(on the left) and corresponding Legendre ellipse with the result of the test of the hypothesis on 0.05 level of
significance. The cross (i.e. position of parameters [σ, ψ]) outside the ellipse determine that the hypothesis was
rejected.

8 Conclusion

This paper is solving nontrivial problem of testing hypothesis of the random vector which has dependent
components. There is no general solution of this problem and no general theory exists. Therefore, this unique
method has been developed. Benefit of this method is that it enables to distinguish the detection of structural
changes which are not possible to find without described algorithm. The principal presented in this paper is
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 general and it is possible to apply in any test of particle distribution in the case that it is possible to simulate
the theoretical distribution of particles.
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