

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

 OPENING THE BLACK BOX: ALTERNATIVE SEARCH

DRIVERS FOR GENETIC PROGRAMMING AND
TEST-BASED PROBLEMS

Krzysztof Krawiec

Institute of Computing Science
Poznan University of Technology

Piotrowo 2, 60-965 Poznań
Poland

krawiec@cs.put.poznan.pl

Abstract: Test-based problems are search and optimization problems in which candidate solutions interact with
multiple tests (examples, fitness cases, environments) in order to be evaluated. The approach conventionally
adopted in most search and optimization algorithms involves aggregating the interaction outcomes into a scalar
objective. However, passing different tests may require unrelated ‘skills’ that candidate solutions may vary on.
Scalar fitness is inherently incapable of capturing such differences and leaves a search algorithm largely unin-
formed about the diverse qualities of individual candidate solutions. In this paper, we discuss the implications of
this fact and present a range of methods that avoid scalarization by turning the outcomes of interactions between
programs and tests into ‘search drivers’ – partial, heuristic, transient pseudo-objectives that form multifaceted
characterizations of candidate solutions. We demonstrate the feasibility of this approach by reviewing the ex-
perimental evidence from past work, confront it with related research endeavors, and embed it into a broader
context of behavioral program synthesis.

Keywords: Evolutionary computation, test-based problems, genetic programming, search drivers, coevolutionary
algorithms, surrogate fitness

1 Introduction

A great deal of research in artificial and computational intelligence revolves around iterative problem solving,
because many problems of practical interest lack an analytical method or a closed-form formula for solving
them in a single step. In such cases, building a preliminary, imperfect (e.g. random) candidate solution, and
modifying it iteratively in expectation of gradual improvement, remains the only viable approach.

The traditional take on iterative problem solving involves division of methods into gradient-based techniques
and generate-and-test methods. The defining feature of the former is the existence of an update rule that allows
translating the evaluation of the current candidate solution into directed updates of parameters. Such a rule
often has good theoretical grounding and, crucially, can be derived for all parameters of candidate solutions.
Training neural networks via error backpropagation and many reinforcement learning algorithms belong to this
category. Gradient-based algorithms excel at exploiting the local neighborhoods of solution space in close-to-
optimal way, but may be not particularly good at at its large-scale exploration.

On the other extreme there are the generate-and-test algorithms, where it is assumed that a directional
update rule (or its computationally efficient implementation) does not exist. Such algorithms use the feedback
from evaluation process only to decide which candidate solutions are worth considering in next iterations, not
in which way they should be modified. The poster child of this family are arguably evolutionary algorithms, in
which the actions of search operators are usually random and thus undirected in the above sense. Compared
with gradient-based methods, generate-and-test algorithms have complementary characteristics in being capable
of exploring the search space at its global scale; however, they are not necessarily good at exploiting it locally.

The lead motif of this position paper is that, common wisdom to the contrary, there is a lot of middle ground
between the above extremes which can be exploited, particularly in the framework in evolutionary computation
(EC). Evaluating a candidate solution does not have to result in a single scalar: for many domains, means exist
for opening the black box of evaluation, making it more informative, and exploiting the additional information
for the sake of search efficiency. To bring arguments for this hypothesis, in Section 2 we identify the sources
and implications of the evaluation bottleneck on the pathway between evaluation process and search operators.
In Section 3 we briefly present concrete algorithms that open that bottleneck for the, strikingly common in
practice yet largely not recognized, class of test-based problems. In Section 4 we discuss the implications of
these opportunities, introduce the concept of search driver, and put our considerations in a broader perspective,
pointing to research directions that seem to be particularly promising.

1

ISSN: 1803-3814

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

 2 The evaluation bottleneck problem

Most of the ongoing research in EC builds upon the classical formulation of optimization problem: given a space
S of candidate solutions and an objective function f : S → O (where O is some ordered domain, typically R), find
an s ∈ S that maximizes/minimizes f . Besides being succinct and elegant, this formulation is also practical in
allowing to capture the desired characteristics of sought optimal solution by designing an appropriate objective
function f . In other words, f is the means of expressing designer’s intent concerning the expected features of
the result of a search process.

What we however seem to overlook quite often is that this is essentially the only role of objective function
in this setting: to characterize the expected outcome of problem solving. In most cases an objective function is
not meant to indicate how a given problem should be solved or, in particular, how a search process should be
guided. Yet virtually all heuristic search algorithms adopt objective function as a search guidance, using it as
the only source of information in making decisions about individual candidate solutions.

Arguably, relying on objective function is sometimes justified by limited insight into domain of consideration.
This is perhaps most evident in black-box optimization, where search algorithm’s agnosticism about the function
being optimized is the principal tenet. However, entirely black-boxed domains are few and far between in real
world. It is actually very hard to point out to a domain where, nothing can be said about a candidate solution
in addition to scoring it with a scalar evaluation.

As a result, an objective function, primarily intended to succinctly capture solution’s characteristics that
are relevant from experimenter’s perspective, is employed as a primary (and often the only one) search driver.
The implication of this practice is evaluation bottleneck [11]: a candidate solution, which is often an intricate
combinatorial structure or a complex entity comprising numerous variables, is ‘compressed’ into a single num-
ber. This forces the search algorithm to ‘reverse-engineer’ that information in order to make the right choices
concerning the search process. A sheer juxtaposition in terms of information contents reveals that the perspec-
tives for conducting efficient search in this regime must be bleak when no additional assumptions about the
nature of the problem can be made. For instance, synthesizing a 4-bit multiplexer, a basic benchmark in genetic
programming (GP), requires synthesizing a candidate solution (logical expression) that implements one of the

22
6

= 264 ≈ 1.8× 1019 6-input Boolean functions (4 data bits plus 2 address bits). To completely characterize
program’s behavior in this domain, 64 bits are necessary. Yet, in common practice those 64 bits are compressed
by an objective function that counts the number of correct outputs, so that fitness ranges from 0 to 64 inclusive
and conveys thus only 6 bits of information.

Therefore, each evaluation earns the search algorithm mere 6 bits of information, and based on that it is
expected to make decisions about entities that require an order of magnitude more information to describe
their behavior. Generate-and-test search in exponentially large search spaces using such snippets of information
cannot be efficient in general, and this disproportion becomes only more grave for more complex problems1.

The question of practical relevance is: does it make sense to adhere to the scalar evaluation template and
impose the evaluation bottleneck on oneself, particularly in domains where the only benefit obtained in return
is the elegance of problem’s formulation? We argue that forcing a search algorithm to rely exclusively on the
feedback from scalar evaluation hampers its performance and is as such such be abandoned wherever possible.
In the next section, we briefly present a range of approaches that facilitate opening the evaluation black box
for the specific class of test-based problems.

3 Opening the evaluation bottleneck for test-based problems

In this section, we illustrate the opportunities for widening the evaluation bottleneck for test-based problems
(TBPs), which have been originally proposed in studies on coevolutionary algorithms [1, 3]. In TBPs, it is
assumed that the objective function f : S → O is based on a set T of tests, i.e. entities that the candidate
solutions from S can interact with. For instance, when applying the TBP perspective to a machine learning
problem, S is the space of hypotheses (classifiers, regression models, etc.) and T is the set of available training
examples; when learning a game-playing strategy for a two-person game, S hosts all possible strategies of the
first player and T is the set of opponent strategies; when approaching the problem of learning a controller,
S is the set of all possible controller designs, while T is the set of environments for those controllers (e.g.,
initial/boundary conditions used to start controller’s simulation with).

The interactions between candidate solutions and tests are implemented by an interaction function g :
S × T → O. In the machine learning domain mentioned above, one would assume that g(s, t) returns 1 if a
classifier s classifies an example t correctly, and 0 otherwise. For s and t being game strategies, it is typically
assumed that g(s, t) returns the payoff for the first player. For control problems, g(s, t) could be the error of

1Note that even for this tiny problem, the actual search space is much larger than 264, because many syntactically different
programs may exhibit the same output behavior (semantics).

2

Opening the Black Box: Alternative Search Drivers for Genetic Programming and Test-based Problems

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

G t1 t2 t3 t4 t5
a 1 1 0 1 1
b 0 1 0 1 0
c 1 0 1 1 0
d 0 1 0 0 0

G0 t1+3 t2+4+5

a 0.5 1
b 0 0.66
c 1 0.33
d 0 0.33

a) Interaction matrix G b) G after clustering c) Derived objectives G0

Figure 1: Discovery of Objectives by Clustering (DOC): The original matrix G (a) of interactions between
candidate solutions (a . . . d) and tests (t1 . . . t5) is clustered column-wise (b), and the centroids of clusters
become derived objectives (c), to be used in multiobjective selection process.

controller s simulated in the environment t, calculated with respect to some desired output. Depending on
domain, interaction outcomes can be thus discrete or continuous.

The theory of TBPs developed within coevolutionary algorithms points to several solution concepts, i.e.
the characteristics of candidate solutions (or subsets of candidate solutions) that one is looking for [16]. The
solution concept that is arguably most common in practice is maximization of expected utility (MEU), in which
the goal is to identify s ∈ S such that maximizes (or in general optimizes) the expected interaction outcome g:

f(s) =
1

|T |
∑
t∈T

g(s, t).

Therefore, MEU corresponds to the objective functions that one typically employs when solving a test-based
optimization problem with EC, e.g., classification accuracy on T in machine learning problems, expected game
outcome in game playing, or aggregated error2 in control problems. In this sense the formalism of TBPs does
not bring anything new to EC practice3. However, it helps us identifying the evaluation bottleneck (Section
2), which is due to f aggregating the individual interaction outcomes g(s, t) into a single scalar value. This
has several consequences that we argue to be detrimental. Two candidate solutions s1 and s2 with different
outcomes of interactions with tests from T can be granted the same fitness f(s1) = f(s2), rendering them
indiscernible for selection operator – in which case it will most likely make a random choice, even if one of them
is more desirable in some sense. If f(s1) < f(s2), s1 can be discarded in selection phase, even though it might
have passed the test(s) that no other candidate solution manages to pass in the current population, and thus
might possess a unique skill that may be worth preserving in the generations to follow.

In our past studies on these topics [9, 12, 15, 13], we proposed a range of methods that address these
problems by avoiding aggregating interaction outcomes into scalar evaluations. The methods can be conveniently
explained using the concept of interaction matrix G that gathers the interaction outcomes g(s, t) between the
candidate solutions (corresponding to rows in G) and the tests (corresponding to columns in G). The fitness
of a given candidate solution is simply the sum of the corresponding row in G. In a generative evolutionary
algorithm, G is built anew in each generation, based on the solutions in the current population and the set of
tests T . We usually assume that the tests are given as a part of problem formulation (e.g., the set of training
examples in machine learning) and thus remain fixed throughout a search process – unless we allow them to
coevolve with solutions [12, 15].

In Discovery of Objectives by Clustering (DOC) [9], we seek for the common ‘motifs’ in behaviors of candidate
solutions on tests. To that aim, G is clustered column-wise using a rudimentary clustering algorithm (Fig. 1).
The centroids of clusters are then gathered in a derived interaction matrix G′, where columns form multiple
derived objectives that characterize solutions’ behaviors on the tests gathered in particular clusters. We typically
aim at a low number of objectives, which can be achieved by parameterizing the clustering algorithm accordingly.
The derived objectives identified in this way can be subsequently used in a multiobjective selection procedure
like Non-dominated Sorting Genetic Algorithm (NSGA) [4]. As multiobjective selection methods avoid direct
aggregation of objectives and rely on a Pareto-ranking of candidate solutions, we obtain a variant of evolutionary
algorithm that naturally maintains and promotes multiple ‘skills’ in population, which in turn improves diversity
and lowers the likelihood of premature convergence. The derived objectives are extracted independently in each
evolutionary generation, so they adapt to the dynamically changing characteristics of the population.

Empirical evaluation in [12, 15] and [9] confirmed the usefulness of DOC. In the former works, we applied
it to well-known TBPs: numbers games (abstract two-player game), density classification task (synthesizing

2Where the sign of the error would have to be obviously negated in order to align with MEU being maximized.
3The central problem tackled in TBPs is that T is often very large or infinite, so (3) cannot be directly computed and must be

estimated. Coevolutionary algorithms perform iterative, ‘active’ sampling of T . However, this characteristics of TBPs is largely
irrelevant for our considerations here.

3

K. Krawiec

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

Figure 2: Candidate solutions from the last generation of an evolutionary run (green marks) tend to spread
across the Pareto front that spans the two derived objectives automatically designed by DOC (for complete
figure and explanation see Figs. 8 and 9 in [15]).

one-dimensional cellular automata that measure the density of 1s in the initial state) and multi-choice Iterated
Prisoner’s dilemma. DOC was combined with a simple two-population competitive algorithm, with the second
population hosting a dynamically coevolving sample of tests from T . The interaction outcomes in G were
clustered using standard k-means algorithm employing the Euclidean distance for measuring the similarity
of interaction outcomes; the number of clusters k was set manually. DOC systematically outperformed the
conventional single-objective approach, and analysis showed that the multiobjective perspective facilitated by
DOC is essential: evolutionary runs that performed well usually had candidate solutions distributed across the
Pareto-front in the space of derived objectives (Fig. 2 and Figs. 8 and 9 in [15]).

In [9], we combined DOC with genetic programming (GP) to evolve programs (expression trees) in discrete
domains. In this case, GP operated as a conventional single-population evolutionary algorithm, i.e. the set
of tests T was fixed and given as a part of task formulation. Each test t ∈ T was a tuple of program input
and corresponding desired output. The interaction function g(s, t) granted a program s with a unit reward for
passing a test t, i.e. producing the expected output for the given input. To avoid fixing the number of DOC’s
clusters k to an arbitrary value, this time we employed X-means, a variant of k-means that autonomously
estimates k using the Bayesian Information Criterion. Also in this GP domain, DOC turned out to outperform
standard GP regarding the likelihood of finding a correct program (success rate).

Clustering of tests is just one possible way of eliciting a multi-faceted characterization of candidate solutions
from an interaction matrix. The Discovery of Objectives via Factorization (DOF) we proposed in [13] employs an
approach that became recently particularly popular for designing recommender systems with machine learning
[7]. The interaction matrix G is decomposed with non-negative matrix factorization (NMF) into a product
of matrices W and H, where the number of columns in W and the number of rows in H must be obviously
equal, and is controlled by method’s parameter k. The k columns in W form factors that capture abstract
characteristics of groups of tests: wij is the value of jth factor for the ith candidate solution in the current
population. Because the direction of preference in the original interaction matrix G is positive (higher interaction
outcomes are more desirable) and the factorization is non-negative, higher values of wij are also preferred, and
wij can be interpreted as a score that the ith candidate solution achieved on the jth factor. Similarly to
DOC, DOF treats the factors in W as derived objectives and passes them to a multiobjective selection method
(NSGA-II). k controls the number of factors and the degree of ‘compression’ imposed on G in the process. If
k ≥ rank(G), WH = G and the factors completely preserve the dominance relation stored in G; in practice
however k � rank(G) so that the number of derived objectives can be handled by NSGA-II (it becomes
problematic to elicit useful selection gradient in presence of many objectives, when the dominance relation
defined by G becomes sparse).

We tested DOF on the same range of benchmark problems as DOC in [9], obtaining similarly encouraging
results. The automatic ‘multiobjectivization’ [6] provided by DOF improved diversification in the population
and facilitated co-existence of differently skilled candidate solutions in population, which in turn led to higher
success rate.

Interestingly, NMF can be effectively calculated also for sparse matrices, only partially filled with interaction
outcomes. Crucially, a factorization algorithm applied to a sparse G produces dense (complete) matrices W
and H, with W containing the scores on all factors for all candidate solutions in the population. Therefore,
it becomes possible to conduct only some interactions between candidate solutions and tests and still obtain
derived objectives in W (though obviously those will only approximate the objectives one would obtain if G
was known in full). Alternatively, W and H can be multiplied and so yield a dense matrix G′, filling-in so the
interaction outcomes that were originally missing in G, and enabling computation of the conventional scalar
fitness (by summing G row-wise for individual candidate solutions). The main motivation here is obviously

4

Opening the Black Box: Alternative Search Drivers for Genetic Programming and Test-based Problems

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

 the savings on computational cost: performing interactions, e.g., applying programs to tests in GP, is usually
the most costly part of evolutionary search. The fitness function derived in this way is essentially a surrogate
fitness. In [14], we implemented this idea in a method dubbed Surrogate Fitness via Factorization of Interaction
Matrix (SFIMX), and demonstrated that it improves over the conventional GP.

4 Discussion

We hypothesize that the methods presented above only scratch the surface of possible ways of opening the
evaluation bottleneck for TBPs. In particular, other means of processing interaction matrices may exist that
yield derived objectives of better characteristics. The benchmark problems approached in the cited works
illustrate that TBPs model a diversified range of problems of practical interest, which makes this methodology
widely applicable in practice.

Moving to a broader context, relying on the TBP formulation and turning a single-objective problem into a
multi-objective one is just one particular way of making a search process better informed about the candidate
solutions. As every piece of information on candidate solutions can potentially make search more effective, we
should be interested in extracting various characteristics of candidate solutions, including those not captured
by conventional objective functions. An example of such a means used routinely in the past is building-in the
preference for smaller programs into selection in GP (e.g. lexicographic parsimony pressure that resolves ties on
fitness by preferring smaller programs). Another one is depreciation of programs that do not make use of (all)
input variables.

The methods presented in Section 3 are just one of possible means of opening the evaluation black box.
Several independent research efforts seem to gravitate in similar direction; examples include elementary fitness
landscapes that enable principled derivation of optimal search operators that enable reaching the optimal
solution in a single step for certain classes of problems [2]. For the specific class of GP problems, machine
learning can be used to analyze program traces and automatically derive useful gradient from them [10].

We claim that the body of evidence gathered in the recent research on deriving underlying objectives suggests
that opening the black boxes of evaluation and widening the information pathways that connect the components
of metaheuristic algorithms is clearly worth pursuing. What seems to be particularly desirable is a general
framing for such alternative sources of search-preferential information. The attempt of such framing, which we
presented in [8], realizes the following line of reasoning. Objective functions are typically assumed to be well-
defined in the entire domain (i.e., S) and to feature global optima that unequivocally indicate which candidate
solutions are ‘ideal’. What is more, they should induce possibly smooth fitness landscape, with no discontinuities
and limited ruggedness. Designing such functions for challenging domains and problems can be difficult – GP,
with the complex mapping from program code (syntax) to program behavior (semantics) to program fitness is
an excellent example of this challenge. We argue that it might be reasonable to lower the bar and instead rely
on search drivers: preference functions that are perhaps only locally defined and/or approximate, and which
do not necessarily measure the entirety of desired characteristics of candidate solutions. Though imperfect,
search drivers can be still helpful in making search process more effective by, for instance, not only by making
population more diverse (like DOC and DOF in Section 3), but for instance by saving candidate solutions with
unique skills from being discarded, or even explicitly pointing to desirable properties of candidate solutions.
In [8], we elaborate on our vision of search drivers and embed them in a unified framework, arguing, among
others, that multiple imperfect search drivers can be together more effective at guiding search, in a similar way
that multiple weak classifiers can together form a compound classifier of superb quality. In the specific case of
GP, it leads to the vision of behavioral program synthesis, where the detailed record of behavior of a candidate
program (input, trace, output) is scrutinized to facilitate the search process (by, e.g., identifying and reusing
potentially useful program fragments [10]).

Ultimately, we should aim at search and optimization methods that automatically exploit, whenever possible,
the internal structure of the problem (or the part of problem specification that is available). One may liken
this vision to the General Game Playing task coined in AI, where an algorithm is expected to devise an game
strategy provided only formal game specification [5]. Recent attempts towards metaheuristic standardization
[17] might pave the way towards achieving that goal.

Acknowledgement: This work was supported by the National Science Centre, Poland, grant number
2014/15/B/ST6/05205.

References
[1] Bucci, A., Pollack, J.B., de Jong, E.: Automated extraction of problem structure. In: K.D. et al. (ed.)

Genetic and Evolutionary Computation – GECCO-2004, Part I, Lecture Notes in Computer Science, vol.

5

K. Krawiec

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX

 3102, pp. 501–512. Springer-Verlag, Seattle, WA, USA (2004). DOI doi:10.1007/b98643. URL http:

//link.springer.de/link/service/series/0558/bibs/3102/31020501.htm

[2] Burke, E., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: A Classification of Hyper-
heuristic Approaches, chap. Handbook of Meta-Heuristics, pp. 449–468. Kluwer (2010). DOI 10.1007/
978-1-4419-1665-5 15. URL http://dx.doi.org/10.1007/978-1-4419-1665-5

[3] de Jong, E.D., Pollack, J.B.: Ideal Evaluation from Coevolution. Evolutionary Computation 12(2), 159–192
(2004)

[4] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-
II. Evolutionary Computation, IEEE Transactions on 6(2), 182 –197 (2002). DOI 10.1109/4235.996017

[5] Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the AAAI competition. AI
Magazine 26(2), 62–72 (2005)

[6] Knowles, J.D., Watson, R.A., Corne, D.: Reducing local optima in single-objective problems by multi-
objectivization. In: EMO ’01: Proceedings of the First International Conference on Evolutionary Multi-
Criterion Optimization, pp. 269–283. Springer-Verlag, London, UK (2001)

[7] Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer
(8), 30–37 (2009)

[8] Krawiec, K.: Behavioral Program Synthesis with Genetic Programming, Studies in Computational Intel-
ligence, vol. 618. Springer International Publishing (2015). DOI doi:10.1007/978-3-319-27565-9. URL
http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Site.BPS

[9] Krawiec, K., Liskowski, P.: Automatic derivation of search objectives for test-based genetic programming.
In: P. Machado, M.I. Heywood, J. McDermott, M. Castelli, P. Garcia-Sanchez, P. Burelli, S. Risi, K. Sim
(eds.) 18th European Conference on Genetic Programming, LNCS, vol. 9025, pp. 53–65. Springer, Copen-
hagen (2015). DOI doi:10.1007/978-3-319-16501-1 5

[10] Krawiec, K., O’Reilly, U.M.: Behavioral programming: a broader and more detailed take on semantic
GP. In: C. Igel, D.V. Arnold, C. Gagne, E. Popovici, A. Auger, J. Bacardit, D. Brockhoff, S. Cagnoni,
K. Deb, B. Doerr, J. Foster, T. Glasmachers, E. Hart, M.I. Heywood, H. Iba, C. Jacob, T. Jansen, Y. Jin,
M. Kessentini, J.D. Knowles, W.B. Langdon, P. Larranaga, S. Luke, G. Luque, J.A.W. McCall, M.A.
Montes de Oca, A. Motsinger-Reif, Y.S. Ong, M. Palmer, K.E. Parsopoulos, G. Raidl, S. Risi, G. Ruhe,
T. Schaul, T. Schmickl, B. Sendhoff, K.O. Stanley, T. Stuetzle, D. Thierens, J. Togelius, C. Witt, C. Zarges
(eds.) GECCO ’14: Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 935–
942. ACM, Vancouver, BC, Canada (2014). DOI doi:10.1145/2576768.2598288. URL http://doi.acm.

org/10.1145/2576768.2598288. Best paper

[11] Krawiec, K., Swan, J., O’Reilly, U.M.: Behavioral program synthesis: Insights and prospects. In: R. Riolo,
W.P. Worzel, M. Kotanchek, A. Kordon (eds.) Genetic Programming Theory and Practice XIII, Genetic
and Evolutionary Computation. Springer, Ann Arbor, USA (2015). URL http://www.cs.put.poznan.

pl/kkrawiec/wiki/uploads/Research/2015GPTP.pdf

[12] Liskowski, P., Krawiec, K.: Discovery of implicit objectives by compression of interaction matrix in test-
based problems. In: T. Bartz-Beielstein, J. Branke, B. Filipič, J. Smith (eds.) Parallel Problem Solving
from Nature – PPSN XIII, Lecture Notes in Computer Science, vol. 8672, pp. 611–620. Springer (2014).
DOI 10.1007/978-3-319-10762-2 60

[13] Liskowski, P., Krawiec, K.: Non-negative matrix factorization for unsupervised derivation of search objec-
tives in genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference
2016, GECCO ’16, pp. 749–756. ACM, New York, NY, USA (2016). DOI 10.1145/2908812.2908888. URL
http://doi.acm.org/10.1145/2908812.2908888

[14] Liskowski, P., Krawiec, K.: Non-negative matrix factorization for unsupervised derivation of search ob-
jectives in genetic programming. In: T. Friedrich (ed.) GECCO ’16: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, pp. 749–756. ACM, Denver, USA (2016). DOI
doi:10.1145/2908812.2908888

[15] Liskowski, P., Krawiec, K.: Online discovery of search objectives for test-based problems. Evolutionary
Computation pp. 1–32 (2016). DOI 10.1162/EVCO\ a\ 00179. URL http://dx.doi.org/10.1162/EVCO_

a_00179. PMID: 26953882

[16] Popovici, E., Bucci, A., Wiegand, R.P., de Jong, E.D.: Handbook of Natural Computing, chap. Coevolu-
tionary Principles. Springer-Verlag (2011)

[17] Swan, J., Adriaensen, S., Bishr, M., Burke, E.K., Clark, J.A., Causmaecker, P.D., Durillo, J., Hammond,
K., Hart, E., Johnson, C.G., Kocsis, Z.A., Kovitz, B., Krawiec, K., Martin, S., Merelo, J., Minku, L.L.,
Ozcan, E., Pappa, G.L., Pesch, E., Garcıa-Sánchez, P., Schaerf, A., Sim, K., Smith, J.E., Stützle, T., Voß,
S., Wagner, S., Yao, X.: A research agenda for metaheuristic standardization. In: MIC 2015: The XI
Metaheuristics International Conference (2015)

6

Opening the Black Box: Alternative Search Drivers for Genetic Programming and Test-based Problems

