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Abstract
In this paper, we develop a mathematical model for modelling and simulation of
the dam-break flow through various obstacles. The model used here is an extension
of one-layer non-hydrostatic (NH-1L) model by considering varying channel width
(Saint Venant). The capability of our proposed scheme to simulate free surface
wave generated by dam-break flow through various obstacles is demonstrated,
by performing two types of simulation with various obstacles, such as; bottom
obstacle and channel wall contraction. It is shown that our numerical scheme can
produce the correct surface wave profile, comparable with existing experimental
data. We found that our scheme demonstrates the evolution of a negative wave
displacement followed by an oscillating dispersive wave train. These well-captured
dispersive phenomena, indicated both the appropriate numerical treatment of the
dispersive term in our model and the performance of our model.
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1 Introduction

Dams around the world are plagued by the potential
threat of failure which may cause calamities. These
calamities are characterized by a sudden, fast, and un-
controlled flow, which is usually caused by structural
collapse due to old age or natural disasters. The ensu-
ing floods downstream of a dam can inflict significant
damage along their pathways, often resulting in loss of
life and destruction of property. Dam failures can pose
major issues long after the initial flood has stopped in
some circumstances.

On March 27, 2009, the Situ Gintung dam collapsed,
which was one of the worst dam collapse occurrences in
Indonesia. This 10-meter-high dam is located in Ciren-
deu, South Tangerang, Banten, and one of the causes
that contributed to its collapse was the dam’s old age
and excessive rainfall outflow. The amount of water
that poured downstream at the time of the catastro-
phe was up to 1 million m3, inundating areas along the
pathways, inflicting damage to public buildings, and
killing 100 people. In order to prevent similar incidents
in the future, it is necessary to do disaster mitigation in
ways such as modelling and simulating dam breaches
using mathematical models, which were developed by
several authors [4, 19, 13, 30, 8].

The floods due to the dam break exhibit the typ-
ical features of open channel flow in that the hori-
zontal length scale is greater than the depth scale,
allowing the vertical component of velocity to be ig-

nored. This model is referred to as the hydrostatic
model. In our previous work [26, 25], we have suc-
cessfully studied dam break flow for various obstacles,
i.e bottom obstacle [26] and channel wall contraction
as an obstacle [25]. Our preceding results using hy-
drostatic model are quite comparable with other ex-
isting results, but the absence of the hydrodynamic
pressure term can causes some differences to be found
which lead to unrealistic results [9], thus the hydro-
dynamic pressure term can not be ignored [10]. To
address this issue, some researchers propose utilizing
different models that can account for dispersive effects,
such as the Reynolds-Averaged Navier-Stokes [7, 17, 5]
and Boussinesq-type waves model [15, 29, 21, 3]. The
acquired findings are quite convincing, but they are dif-
ficult, time-consuming, and energy-consuming. Mixed
high-order derivative variables in Boussinesq, for ex-
ample, need specific attention in their discretization
[6, 28].

The utilization of neural networks as surrogate mod-
els in various real-world engineering scenarios [11],
which continues to be developed can be an alterna-
tive solution. For example, Kudela and Matousek [12]
proposed Surrogate-Assisted Evolutionary Algorithms
(SAEAs) based on a Lipschitz underestimation to de-
velop a differential evolution based algorithm. Cai et
al. [2] uses the conventional Physic Informed Neural
Networks (PINN) to solve various inverse problem in
biomedical flow. Tang et al. [27] develops conven-
tional PINN combined with polynomial interpolation
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to solve fluid mechanics. Sun et al. [23] modifies con-
ventional PINN into a new Residual Cooperative Neu-
ral Network (RCNN) to solve hydrodynamics cases.
Al-Ghosun et al. [1] use Proper Orthogonal Decom-
position (POD) Polynomial Chaos Expansion (PCE)
as a surrogate model to quantify the uncertainty in
hydraulic, including the case of dam-break over flat
bed. Lund et al. [24] used reservoir-based surrogate
forecast model directly constructed from 1D Hydro-
dynamic model and combined with Ensemble Kalman
Filter (EnKF) to forecast flows and overflows in urban
area. Further, Nguyen et al. [16] predicted the non-
linear hydrodynamic pressure coefficient on submerged
bodies near the water surface using surrogate model
based on 2D Reynolds-averaged Navier Stokes (RANS)
combined with Gaussian process. Both of their results
looks promising although the implementation of sur-
rogates model sometimes does not cover the full fea-
tures of the 1D Hydrodynamic, for example backwa-
ter effects, numerical stability issues [24], flow induced
instability [16], non-linearity effect [1]. Moreover, the
high computational cost of ensemble for hydrodynamic
models is also unavoidable [24]. Considering the lim-
itations of the surrogate model for the hydrodynamic
case, thus the conventional approach using the Non-
Linear Shallow Water (NLSWE) equations with hy-
drodynamic pressure terms as in [28, 18, 22] still looks
promising.

In practice, open channel geometry is quite compli-
cated, necessitating the consideration of varying chan-
nel widths, which are not present in the previous study
[28, 18]. Thus, in this study, we propose a one-layer
non-hydrostatic Saint Venant model. This is an exten-
sion of the one-layer non-hydrostatic model (NH-1L)
used by Tarwidi et al. [28] to investigate the landslide-
generated waves and also considered in [18] to investi-
gate the bottom motion that generates surface waves.
The non-hydrostatic model used in the previous re-
search [28, 18] is an improved conservative staggered
scheme for NLSWE described previously in [22], to cap-
ture the dispersion effects by solving the Euler equa-
tions. The MCS scheme used in the implementation of
NH-1L is known to be very efficient, easy to implement
and robust. In the case hydrostatic variant, without
the hydrodynamic pressure term, the MCS scheme is
proven to be stable and non-dissipative. Good ability
to capture the hydraulic jump, dispersive effects and
near steady state condition are a distinct advantage in
using this momentum conservation principle in stag-
gered scheme.

Thus, the paper is organized as follows. The govern-
ing equations is one-layer non-hydrostatic Saint Venant
equations which is discussed in Section 2. In Section
3, we constructed a numerical scheme to solve the non-
hydrostatic model. To investigate the accuracy of the
models, benchmark tests comparing the computed re-
sults with experimental data were conducted in Section
4. Conclusions and remarks will be given in the last
section.

2 Governing Equations

In this section, we consider the one-layer non-
hydrostatic model, which is used to simulate the free
surface waves generated by dam-break flow through
various obstacles.

Suppose a fluid layer bounded below by a topogra-
phy d(x) and above by the free surface η(x, t), flow-
ing through an open channel with a rectangular cross-
section as sketched in Figure 1. The motion of the free
surface is governed by the one layer non-hydrostatic
Saint Venant equations given by the followings

∂A

∂t
+

∂Q

∂x
= 0, (1)

∂û

∂t
+ û

∂û

∂x
+ g

∂(ĥ+ d̂)

∂x
= −1

2

∂p

∂x
, (2)

1

2

(
∂vtop
∂t

+
∂vbot
∂t

)
=

p

h
, (3)

vtop − vbot
h

+
∂u

∂x
= 0, (4)

vbot = −u
∂d

∂x
, (5)

If we neglect the pressure term p(x, z, t), the conti-
nuity equations (1) and the momentum balances in
x-direction (2) are the well-known hydrostatic Saint
Venant equations. The equation (3) is the momentum
balances in z-direction while the equation (4) is the
depth integrated continuity equation. The last equa-
tion (5) is a kinematic condition for fixed bottom d(x),
see [28] for time-varying bottom.

The notations A(x, t) represents the wet cross-
sectional area of the channel whereas the no-
tation Q(x, t) is flux or discharge. Note that
Q(x, t) = A(x, t)û(x, t), with û(x, t) is the horizontal
fluid velocity. Because we consider the case of rect-
angular channels, thus the cross-section area has the
following relation A(x, t) = ĥb̂, with ĥ(x, t) denotes the

fluid height, and b̂(x) the channel width. Furthermore,
the vertical fluid velocity on the free surface and the
bottom are represented by vtop and vbot respectively.
On the free surface, the hydrodynamic pressure is zero
p(x, t) = 0, whereas at the bottom is non-zero.

3 Numerical Method

In this section, we revisited a numerical scheme for the
hydrodynamic model using the MCS.

Consider equations (1)-(5) on the spatial domain
Ω = [xmin, xmax] and time interval τ = [0, T ] with
boundary prescribed in the downstream. The time
interval τ is divided into Nt number of time inter-
val partitions with time steps length of ∆t and for
all n ∈ In, In = {0, 1, 2, ..., Nt}, tn = n∆t. The
spatial domain Ω is divided into Nx number of cells
with a spatial length of ∆x/2 to obtain a staggered
grid with partition points P = {xj+1/2}j∈I and for all

j ∈ I = {0, 1, 2, ..., Nx}, xj+1/2 = (j + 1
2 )∆x. This
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Figure 1: Sketch of domain and notation: (a) 3D view of open channel flow, (b) top view, (c) side view of
channel width b(x) and (d) side view of the channel walls visualize as y = ±b(x)/2

staggered arrangement allows us to calculate the un-
known on neighbouring grid points alternately, e.g.
u(xj+1/2, t

n) = un
j+1/2 is approximated on the half

grid points, whereas a(xj , t
n) = anj , p(xj , t

n) = pnj and
v(xj , t

n)|top[bot] = vn
j,top[bot]

is approximated on the

full grid points. Thus the fully discrete scheme is

An+1
j = An

j − ∆t

∆x

(
Qn

j+1/2 −Qn
j−1/2

)
, (6)

un+1
j+1/2 = un

j+1/2 −∆t(uux)
n
j+1/2 · · ·

−g
∆t

∆x

(
ηn+1
j+1 − ηn+1

j

)
· · ·

− ∆t

2∆x

(
pn+1
j+1 − pn+1

j

)
, (7)

vn+1
j,top = vn

j,top −

(
vn+1

j,bot
− vn

j,bot

)
· · ·

+2∆t
pn+1
j

hn+1
j

, (8)

vn+1
j,top + hn+1

j

un+1
j+1/2 − un+1

j−1/2

∆x
= vn+1

j,bot
, (9)

vn+1

j,bot
= −max

(
0, un

j−1/2

)
dj − dj−1

∆x
· · ·

−min

(
0, un

j+1/2

)
dj+1 − dj

∆x
. (10)

In the following, the unknown variables are computed
consistently

A|j = h|jb|j , Q|j+1/2 = ∗Aj+1/2bj , (11)

where ∗Aj+1/2 is calculated using the upwind approx-

imation,

∗Aj+1/2 =

{
hjbj , for uj+1/2 ≥ 0,
hj+1bj+1, for uj+1/2 < 0.

(12)

The term advection is approximated by the momentum
conservative principle as first proposed in [22], and then
modified by several authors [26, 25] to consider the wet-
cross sectional area as follows

uux =
1

A
(Qu)x − 1

A
uQx. (13)

Adopting the relation (13), the consistent approxima-
tion for the advection term reads as follows

uux|j+ 1
2
=

1

Āj+1/2

(
Q̄j+1

∗uj+1 − Q̄j
∗uj

∆x

)
− 1

Āj+1/2

(
uj+1/2

Q̄j+1 − Q̄j

∆x

)
, (14)

whereas

Āj+1/2 =
Aj +Aj+1

2
, Q̄j =

Qj−1/2 +Qj+1/2

2
,

(15)
and the first-order upwind approximation for horizon-
tal velocity,

∗uj =

{
uj−1/2, for Q̄j ≥ 0,

uj+1/2, for Q̄j < 0.
(16)

There are five unknown in the non-
linear system equations (6)-(10) such as
(An+1

j , un+1
j+1/2, v

n+1
j,top, v

n+1

j,bot
, pn+1

j ), that must be

calculated. To obtain the solution, we substitute
the equations (7)-(8) into equation (9) to yields the
Poisson pressure equation

Ap⃗n+1 = f⃗ (17)
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where

A =



a1 b1 0
c2 a2 b2

c3 a3 b3
. . .

. . .
. . .

0
cNx−1 aNx−1 bNx−1

cNx aNx


,

p =



pn+1
1

pn+1
2

pn+1
3
...

pn+1
Nx−1

pn+1
Nx


, f =



f1
f2
f3
...

fNx−1

fNx


,

ai =
∆t

∆x
hn+1
j +

2∆x∆t

hn+1
j

, bi = − ∆t

2∆x
hn+1
j ,

ci = bi,

fi = −hn+1
j

(
ûj+1/2 − ûj−1/2

)
· · ·

−∆x

(
vn
j,top + vn

j,bot

)
+ 2∆xvn+1

j,bot

The tridiagonal matrix A is Nx ×Nx in the system
of linear equations (17) for which can be solved by any
tridiagonal matrix solver, for example Thomas Algo-
ritm, hence it is very efficient.
Next, we use predictor-corrector procedure to obtain

the values of uj+1/2 at each time step. First we solve
equation (7) without hydrodynamic pressure term as
predictor procedure and the solution is denoted by
ûj+1/2. In correction procedure, we update the value
using the following formula

un+1
j+1/2 = ûn+1

j+1/2 −
∆t

2∆x

(
pn+1
j+1 − pn+1

j

)
. (18)

We summarize the procedure to solve the one layer
non-hydrostatic Saint Venat model given as follows

Algorithm 1 NH-1L Saint Venant

Input: initial condition, specific topography d(x) or
channel width b(x)
Output: water level hn

j

Proccedure:

1: Solve the hydrostatic Saint Venant model using the
MCS scheme. From the equation (6) we get An+1

j

then using relation (11) we get hn+1
j . Meanwhile,

from the equation (7) we get the predicted value
ûn+1
j+1/2,

2: Solve the Poisson pressure equation (17) using
Thomas Algoritm to get pn+1

j ,

3: Calculate vn+1

j,bot
using equation (10),

4: Calculate un+1
j+1/2 using corrector procedure (18),

5: Calculate vn+1
j,top using equation (8)

Another version of this one-layer non-hydrostatic
model can be found in [18] and [28].

Dam-break simulations often encounter problems in
the wet-dry transition area. Thus, a simple wet-dry
procedure combined with a thin-layer technique should
be employed. If the entire water depth in the dry re-
gion is less than the provided threshold value hthin, the
initial water depth is replaced by a thin layer of water
with depth hthin, specifically.

h =

{
hn
j , for hn

j ≥ hthin,

hthin, for hn
j < hthin.

(19)

Moreover, in the dry area, the momentum balance
equation (7) is turned off to avoid numerical instability.
In this case, a cell is deemed dry if the water level is
less than the threshold value or if the area Aj in (15) is
less than the threshold value Athres given beforehand.

4 Results and Discussion

In this section, we will investigate the capability of our
proposed scheme to study the dam-break flow through
different obstacles; bottom obstacles and channel wall
contractions obstacles. In this simulation, the fric-
tion term are considered by adding the friction term
−Cf |u|u in the R.H.S of momentum balance in x-
direction (2), as follows

Cf =
gN2

h1/3
(20)

where, Cf is the drag coefficient parameter, expressed
in terms of the Manning coefficient N .

4.1 Channel Wall Contraction Obstacles

The dam-break flow laboratory experiment through a
channel with various contraction geometries was con-
ducted by [10]. The experiment was conducted in a
rectangular horizontal channel 8.90 m long, 0.30 m
broad, and 0.34 m high as sketched in Figure 2a. The
fluid reservoir in the upstream part was constructed
and initially filled with water to a depth of h0 = 0.25
m. The vertical gate (red) symbolizing the dam, situ-
ated 4.65 m from the left boundary. The 4.25 m long
downstream part of the channel was initially dry, and
the right boundary is open boundary so that the flow
can descend freely without reflection, as shown in Fig-
ure 2b. Here, three types of contractions were build
in the form of trapezoid and triangular contractions.
There are two types of trapezoidal contraction with
different dimension, referred as trapezoidal A and B,
and one triangular contraction. Three type of contrac-
tions which located at the contraction zone indicate a
transition from smooth (represented by trapezoidal A
and B contractions) to abrupt contraction (represented
by triangle contractions), as shown in Figure 2c. To in-
vestigate the contraction effect, in each experiment, the
lengths of the contraction zone were 0.95 m, the max-
imum contraction width was 0.10 m, and the distance
from the gate was 1.52 m.
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Figure 2: Experiment configuration; (a) side view, (b) top view of the channel along with locations of the four
gauges are indicated by crosses: G1 (blue), G2 (green), G3 (magenta), and G4 (brown). (c) Top view of the
three contraction models and their dimensions (in meters), redrawn from [26, 10].

Figure 3: Time series plot of water levels, recorded at Gauges G1-G4 from experimental (green), Hydrostatic
(red) and Hydrodynamic (blue), for channel with Trapezoidal B contraction.
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Figure 4: Time series plot of water levels, recorded at Gauges G1-G4 from experimental (green), Hydrostatic
(red) and Hydrodynamic (blue), for channel with triangular contraction.

Figure 5: Time series plot of water levels, recorded at Gauges G1-G4 from experimental (green), Hydrostatic
(red) and Hydrodynamic (blue), for channel with trapezoidal A contraction.

Numerical simulations are performed with the fol-
lowing set-up; wet-dry threshold Athres = 0.001, thin
film technique hthin = 0.0001, drag coefficient Cf =
0.0026, spatial step ∆x = 0.05 and CFL-like condi-
tion C = 0.2. Simulations are conducted by using
initial conditions as follows; initial horizontal velocity
u(x, 0) = 0, initial flux Q(x, 0) = 0, initial vertical ve-
locity w(x, 0) = 0, initial water level h0 = 0.25 m on

the upstream part of the reservoir, and hthin on the
downstream part of the channel to accommodate the
dry situation. The bottom topography d̂(x̂) is flat bot-

tom, see Figure 2a. Moreover, the channel width b̂(x̂)

is varying where the profile is visualize as y = ±b̂(x̂)/2
sketched in Figure 2b.

The simulation results (red) from our previous con-
tribution [25] were compared to experimental data
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Figure 6: Experiment configuration of Dam-break through the triangular bottom obstacle. The top view of the
channel along with the locations of the three gauges are indicated by crosses: G1 (blue), G2 (magenta), and
G3 (brown), redrawn from [20].

(green) at four gauge locations for trapezoidal type A
contraction (Figure 5), trapezoidal type B contraction
(Figure 3), and triangular contraction (Figure 4). The
simulation results are presented in the form of nor-
malized water level h/h0 on the vertical axis y versus
normalized time t(gh0)

1/2 on the horizontal axis x. It
is shown that the hydrostatic model successfully pre-
dicts hydraulic jumps in the three types of channels
which is in line with [14] results, but unable to capture
the oscillating dispersive wave train at the locations
where hydraulic jumps occur. This indicates that dis-
persive effects cannot be captured using hydrostatic
models. The results from our hydrodynamics model
(blue), on the other hand demonstrates the evolution
of a negative wave displacement followed by a disper-
sive wave train with oscillation appearing in the loca-
tion where the hydraulic jump occurs. Even though
the oscillations are slightly over fitting, probably due
to the absence of turbulence nor use any viscosity term
[10], they are still acceptable with the RMSE error less
than 4.458%.

4.2 Bottom Obstancle

The laboratory experiment through a rectangular hor-
izontal channel with bottom triangular obstacle was
conducted by [20]. It is a 5.60 m long, 0.5 m broad,
and 0.11 m high as sketched in Figure 6. The water
barrier (gate) is located 2.39 m from the upstream to
form a fluid reservoir, initially filled with water with
h0 = 0.111m height. The triangular bottom obstacle
with 0.065 m height, 0.9 m long and and has bed slopes
of ±0.14 is located 1.61m from the gate, to form a still
water puddle downstream of the channel. The puddle
downstream is 0.02m in height where the right bound-

ary is hard-wall glass.

Numerical simulations are performed with the fol-
lowing set-up; wet-dry threshold Athres = 0.0001, thin
film technique hthin = 0.0001, Manning coefficient
N = 0.011, spatial step ∆x = 0.025 and CFL-like con-
dition C = 0.1. Simulations are conducted by using
initial conditions as follows; initial horizontal velocity
u(x, 0) = 0, initial flux Q(x, 0) = 0, initial vertical
velocity w(x, 0) = 0 and hthin on the part of the chan-
nel to accommodate the dry situation. The bottom
topography d̂(x̂) is triangular bottom, see Figure 6.
Moreover, the channel width is straight wall which is
b̂(x̂) = 1.

As before, for the three gauge sites depicted in Figure
7, the results using the hydrostatic (red) were presented
alongside the hydrodynamic (blue) and compared with
the experimental data (green). The hydrostatic model
is able to accurately forecast hydraulic jumps, which is
consistent with the findings of [14], but it is unable to
account for dispersive phenomena at the places where
hydraulic jumps occur, as seen in Figure 7. For ex-
ample in G1, the dispersive wave train located at the
hydraulics jump at normalized time 0 < t(gh0)

1/2 < 5
is unable to be simulated by our hydrostatic model as
well as the result on [14], but it can be captured very
well by non-hydrostatic model. In contrast to the pre-
vious contraction case, the over fitting problem in wave
train oscillations is not visible in the simulation results
with the triangular botom obstacle. Further, the nu-
merical result are compared with the experimental and
accurate enough with the acceptable RMSE error less
than 3.3756%. This demonstrates both the appropri-
ate of the numerical treatment of dispersive terms in
our model and the ability of our non-hydrostatic (hy-
drodynamic) model to describe dispersive phenomena.
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Figure 7: Time series plot of water levels, recorded at Gauges G1-G3 from experimental (green), hydrostatic
(red) and hydrodynamic (blue) for simulation with bottom triangular obstacles.

5 Conclusion

We have successfully extended a one-layer non-
hydrostatic numerical scheme for study dam-break
flow in an open channel by solving one layer non-
hydrostatic Saint Venant equation. Our scheme is
capable to simulate surface waves due to dam-break
flow through various obstacles including triangular
bottom and channel wall obstacle. It is able to predict
the negative wave displacement followed by an oscil-
lating dispersive wave train, indicating that dispersive
phenomena are well captured. For simulations with
triangular bottom obstacle, the simulation results
reveal that our scheme can handle dispersive wave
trains and hydraulic jumps simultaneously, where this
feature is not available in the previous hydrostatic
model. We conclude that the hydrodynamic pressure
term should be considered in the model and the ap-
propriate of the numerical treatment must be carefully
implemented. Our numerical finding is consistent with
experimental data with the acceptable RMSE error.
Furthermore, our scheme is efficient because it only
solves one vertical layer and, in terms of computation
we only need to calculate the Poisson pressure com-
ponent with a tridiagonal matrix coefficient for each
time step. Moreover we expect that our alternative
models will be computationally competitive with
dispersive models such as KdV or Boussinesq, and

will be adequate for usage by civil engineers working
on dam designs, river normalization, and risk disaster
management.
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