
Quick Hidden Layer Size Tuning in ELM for Classification Problems

Audi Albtoush1,�, Manuel Fernandez-Delgado2, Haitham Maarouf2, Asmaa Jameel Al
Nawaiseh3

1Faculty of Computer Science and Information Technology, Jerash University, Jordan
2Santiago De Compostela University, Spain
3Software Engineering Department, Mut’ah university, Jordan

A.albtoush@jpu.edu.jo�

Abstract
The extreme learning machine is a fast neural network with outstanding per-
formance. However, the selection of an appropriate number of hidden nodes is
time-consuming, because training must be run for several values, and this is unde-
sirable for a real-time response. We propose to use moving average, exponential
moving average, and divide-and-conquer strategies to reduce the number of train-
ing’s required to select this size. Compared with the original, constrained, mixed,
sum, and random sum extreme learning machines, the proposed methods achieve a
percentage of time reduction up to 98% with equal or better generalization ability.

Keywords: Extreme Learning Machine, Number of Hidden Nodes, Moving Aver-
age, Exponential Moving Average, Divide-and-conquer.

Received: 03 December 2023
Accepted: 20 December 2023

Online: 04 January 2024
Published: 15 July 2024

1 Introduction

The extreme learning machine (ELM) was proposed by
Huang et al. [14] to reduce the computational cost of
back-propagation training in feed-forward neural net-
works. The distinguishing feature of ELM is that in-
put weights and biases of hidden neurons are randomly
generated, while output weights are calculated from ac-
tivation’s in the hidden layer and true outputs using
matrix pseudo-inversion. This avoids iterative training
and saves much time compared to existing networks
[21]. The number of the hidden nodes defines the net-
work size and influences the ELM performance and
speed [26, 4]. However, a great generalization requires
to choose the optimal hidden node and this requires
time [16, 17]. As well, when the network size does
not fit the data, disappointing results may be achieved
[31, 5, 30].

There are four main groups of methods to select
the hidden layer size. 1) Random selection [15, 2]
that may lead to over-fitting or under-fitting problems
[24]. An example is I-ELM [12], that randomly gener-
ates hidden nodes each time, adding to the ELM only
the most appropriated. 2) Constructive methods,
that add dynamically hidden nodes, are consuming-
time [18] and may lead to sub-optimal sizes [9]. Some
of these methods [11] add nodes one by one freezing the
weights of existing nodes, stopping when a pre-set max-
imum size or training performance is achieved. The im-
proved incremental ELM [26] adds at each learning step
an additional offset to the output matrix of the hidden
layer before calculating the output weights of the new
hidden node. 3) Pruning methods, that start with
a large hidden layer and reduce its size using statisti-
cal criteria, sparse regression [25] or multiple response

[21]. The pruned ELM [22] starts with a large hidden
layer and then gets rid of the nodes with the lowest rel-
evance to the class labels using a chi-squared test and
an information gain criterion. 4) Other approaches.
The paper [29] reduces the network size to save train-
ing time and updates the weights in the direction of
maximum reduction in squared error. Real-coded ge-
netic algorithms [27] were used to select the optimal
number of the number of hidden nodes, alongside with
their input weights and bias. Particle swarm optimiza-
tion [16] and singular value decomposition [7] were also
used to optimize the hidden layer size of the ELM the
paper [4] avoids the tuning by using a bounded estima-
tion of the hidden layer size from the data population
[6][28][23][3].

The existing approaches attempt to improve the
ELM size but are iterative and time-consuming, and
may lead to over-fitting or underfitting. We propose
three methods, MA-ELM, EMA-ELM and DC-ELM,
which use moving average, exponential moving aver-
age and divide-and-conquer, respectively, to optimize
the search for a good number of hidden nodes. The sec-
tion 1 in the supplementary material briefly describes
the ELM network, whose architecture is shown in Fig-
ure 1, while algorithm 1 lists its pseudo-code. Section
5-7 describe the details of the proposed methods, whose
results are reported in section 13, while section 14 sum-
marizes the conclusions of this work.

2 Extreme Learning Machine

The ELM is a fast learning method based on random
weight initialization and Moore-Penrose generalized in-
version of the hidden layer output matrix. Fig. 1 shows
the ELM architecture. The main and most attractive

DRAFT

ELM characteristics are:

• The bias and input weights of the hidden nodes
are random values.

• Since the hidden layer weights are independent of
the input sample, they do not require iterative up-
dates.

• The output weights of the hidden nodes are com-
puted using an analytical non-iterative method.

Paper [13] showed the ability of the SLFN to set
randomly the input weights and bias. Compared with
traditional SLFNs, the original ELM randomly fixes
the input weights and bias and analytically determines
output weights. Let N be the number of training pat-
terns, I the number of ELM inputs, C the number of
ELM outputs (classes in a classification problem) and
H the number of hidden nodes. Given a training pat-
tern xn = (xn1, . . . , xnI , 1) ∈I+1, the output function
fc(xn) of the c-th output neuron, with c = 1, . . . , C, is
given by:

fc(xn) =
H∑

h=1

bhcg(a
T
hxn), c = 1, . . . , C (1)

where g(·) is the activation function, while ah =
(ah1, . . . , ah,I+1) ∈I+1 is the weight vector connecting
the input layer and the h-th hidden neuron, ah,I+1 is
the bias of hidden neuron h, and bhc is the output
weight between the h-th hidden and the c-th output
neurons. For N training examples {xn, tn}Nn=1 ∈I+1

×C with true outputs tn = (tn1, . . . , tnC), the ELM
can approximate the output with zero error, so that:

N∑
n=1

C∑
c=1

|fc(xn)− tnc| = 0 (2)

so there exist ah and bh = (bh1, . . . , bhC) ∈C such that:

H∑
h=1

bhcg(a
T
hxn) = tnc, n = 1, . . . , N, c = 1, . . . , C (3)

The above N equations can be written compactly
as HB = T, where H is a N × H-order matrix with
items Hnh = g(aThxn), while B = {bhc}H,C

hc=1 and T =

{tnc}N,C
nc=1. The input weights are randomly generated,

and the H×C-order matrix B with the output weights
can be calculated as B = H†T, where H† is the Moore-
Penrose pseudo-inverse ofH. In general, the input data
X and weights A must be scaled in the range [-1,1].
The ELM training method is compiled by algorithm 5.

3 Algorithm of MA-ELM and EMA-ELM

Algorithm 2 lists the operation of MA-ELM and EMA-
ELM. In this code, the function ELM is defined in al-
gorithm 1. The function ACC calculates the accuracy
of ELM trained using the corresponding H argument.

The notation tn, zn ← arg max
c=1,...,C

{tcn, vcn}means that

tn (resp. zn) is the argument that maximizes tcn (resp.
vcn) over c = 1, . . . , C, where vcn are the outputs of the
output neurons (see Figure 1). The function δ(tn, zn) is
1 when tn = zn and 0 otherwise. The notation Mk|Ek
in lines 10 and 16 means that function Mk given by
Eq. (1) (resp. function Ek in Eq. (2)) in the paper is
used for MA-ELM (resp. for EMA-ELM).

4 Algorithm of DC-ELM

Algorithm 3 describes the procedure for DC-ELM,
where |H| denotes the cardinal of set H and function
ACC is defined in algorithm 2.

5 Moving Average Extreme Learning Ma-
chine

The relationship between the number H of hidden neu-
rons and the network performance is not subject to a
specific statistical distribution or type of non-linearity.
So, we propose to select a good H value using the mov-
ing average (MA), a simple statistical tool and indica-
tor for technical analysis, that makes extensive use of
the points to be estimated, widely applied in science,
engineering and financial applications [19, 20]. The
MA creates an averaging of a set of user-defined and
constantly updated values Ak, in our case the training
accuracy of ELM using different values Hk of H. The
objective is to smooth trends in values by filtering out
noise from fluctuations of extreme values. The n-width
moving average Mk+1 of accuracy Ak, for k = 1, 2, . . .,
is defined by Eq. (4):

Mk+1 =
Ak +Ak−1 + . . .+Ak−n+1

n
=

1

n

n∑
i=1

Ak−i+1, k = n+ 1, . . . ,K (4)

Thus, Mk+1 is the average of the previous n values
Ak, . . . , Ak−n+1, that compose the “data window” of
width n. In the applications of MA, often this width n
is randomly selected from the set {2,3,4}. Let {Hk}Kk=1

be a set of K equally spaced values of H defined as
Hk = H1 + (k − 1)∆H, for k = 1, . . . ,K. Our pro-
posal, named MA-ELM, uses MA to estimate the accu-
racy An+1 that ELM is expected to achieve with Hn+1

hidden neurons. This estimation of Eq. (4), denoted
as A′

n+1, uses the n previous accuracies {Ak−i+1}ni=1

achieved by ELM with {Hk−i+1}nk=1 hidden neurons
(these accuracies are calculated by training ELM, so
they require time), so that A′

n+1 = Mn+1. The A
′
n+1 is

compared to An+1, that is the true accuracy calculated
by training the ELM using Hn+1 hidden neurons. A
difference |A′

n+1−An+1| above a threshold τ is consid-
ered high, so that MA-ELM uses the true value An+1.
In this case, for n+2 both the true An+2 and estimated
A′

n+2 accuracies are calculated, what requires to train

DRAFT

I neurons H neurons C neurons

{a
hi
}

hi=1
H,I+1

{b
hc

}
hc=1

H,C

X
Nx(I+1)

={x
ni
}

ni=1
N,I+1

X
Nx(I+1)

A
Hx(I+1)

H
NxH

B
HxC

B=H†T

H=g(XAT)

{x
n1

}
n

N

{x
n(I+1)

}
n
N

{t
n1

}
n
N

{t
nC

}
n
N

T
NxC

Input layer Hidden layer Output layer

V
nxC

={v
nc

}
nc=1

N,C

{z
n
}

n=1
N

z
n
= argmax{v

nc
}

c=1
C

Figure 1: Architecture of the extreme learning machine.

Algorithm 1 Extreme learning machine (ELM). [A,B]=ELM(X,T,H,g)

1: Data: X = {xn}Nn=1: training set, xn ∈I+1; T = {tnc}N,C
nc=1: true output; H: number of hidden neurons; g:

activation function
2: Randomly assign H × (I + 1)-order input weight matrix A from some probability density function.
3: Calculate the hidden layer activity matrix H = g(XAT).
4: Calculate the output weight matrix B = H†T.
5: Result: A = {ahi}H,I+1

hi=1 : input weights; B = {bhc}H,C
hc=1: output weights.

Algorithm 2 Algorithm for MA-ELM and EMA-ELM. [A,B]=MA|EMA-ELM(X,T,{Hk}Kk=1,g)

1: Data: X = {xni}N,I+1
ni=1 : training set; T = {tnc}N,C

nc=1: true output; {Hk}Kk=1: set of numbers of hidden
neurons; g: activation function

2: Select randomly n ∈ {2, 3, 4}; τ ← 0.5; train←True.
3: Function ACC(X,T, H, g):

4: [A,B]←ELM(X,T, H, g). V = {vnc}N,C
nc=1 ← g(XAT)B.

5:

{
tn, zn ← arg max

c=1,...,C
{tnc, vnc}

}N

n=1

; δ(x, x) = 1, δ(x, y) = 0; Acc← 100

N

N∑
i=1

δ(tn, zn).

6: return Acc.
7: end
8: for k ← 1,K do
9: if train then

10: Ak ←ACC(X,T, Hk, g).

11: if k > n then
12: A′

k ←Mk|Ek // Mk calculated using Eq. (1), Ek using Eq. (2)
13: if train and |Ak −A′

k| < τ then
14: Ak ← A′

k; train←False.

15: k∗ ← arg max
k=1,...,K

{Ak}; H∗ ← Hk∗ ; [A,B]←ELM(X,T, H∗, g).

16: Result: A = {ahi}H,I+1
hi=1 : input weights; B = {bhc}H,C

hc=1: output weights.

again the ELM for Hn+2, and the difference test is re-
peated. On the contrary, when |A′

n+1−An+1| ≤ τ , the
difference is considered to be low and MA-ELM ac-
cepts the value estimated by moving average, so that
Ak = A′

k = Mk for k = n + 2, . . . ,K. We set τ=0.5,
a restrictive value for accuracies, that are in %. When

{Ak}Kk=1 are available, either estimated by MA in Eq.
(4) or evaluated by ELM training, the selected value
H∗ for the test is the one with the highest accuracy
H∗ = Hk∗ , with k∗ = argmaxk=1,...,K {Ak}. The oper-
ation of MA-ELM is compiled by algorithm 2 in section
2 of the supplementary material. It is expected that for

DRAFT

Algorithm 3 DC-ELM Algorithm. [A,B]=DC-ELM(X,T,{Hk}Kk=1,g)

1: Data: X = {xni}N,I+1
ni=1 : training set; T = {tnc}N,C

nc=1: true output; {Hk}Kk=1: set of numbers of hidden
neurons; g: activation function

2: Function DC(H)
3: l← |H|; H∗ ← H.
4: if l > 1 then
5: p← ⌈l/2⌉; Split H into subsets H1 = {Hk}pk=1 and H2 = {Hk}lk=p+1.
6: if ACC(X,T,max{H1}, g)>ACC(X,T,max{H2}, g) then
7: H∗ ← H1.
8: else
9: H∗ ← H2.

10: return H∗.
11: end
12: H∗ ←DC({Hk}Kk=1); [A,B]←ELM(X,T, H∗, g).

13: Result: A = {ahi}H,I+1
hi=1 : input weights; B = {bhc}H,C

hc=1: output weights.

many Hk values the Ak will be estimated using MA,
thus saving the training times. In this case, MA-ELM
would be faster than ELM. In the opposite case, if the
difference test was never true all the Ak values would
require to train the ELM and no time would be saved.

6 Exponential Moving Average Extreme
Learning Machine

Exponential moving average (EMA) is a type of MA
widely in artificial intelligence and deep learning [8],
that predicts a value (ELM accuracy Ak) weighting
differently the last value and previous values. The n-
width exponential moving average of Ak, denoted as
Ek+1, is defined by Eq. (5):

Ek = (1− γ)Ak +
γ

n− 1

n∑
i=2

Ak−i+1, γ =
2

1 + n
(5)

where n ∈ {2, 3, 4} as in MA. Depending on n, the
weight 1 − γ of Ak is lower (for n=2) or higher (for

n > 2) than the weights of the previous samples
γ

n− 1
,

as shown by Table 1. Algorithm 2 in section 2 of the
supplementary material lists the pseudo-code for EMA-
ELM.

7 Divide-and-conquer Extreme Learning
Machine

In artificial intelligence, divide-and-conquer (DC) is a
strategy for the design of algorithms characterized by
dividing a problem into sub-problems that are simple
enough to be directly solved. This strategy was used
e.g. to solve kernel support vector machine by clus-
tering data [10], and to apply ELM to big data [7],
creating parts of the hidden layer by applying singular
value decomposition to subsets of the whole dataset.
We propose to use DC to select the best number H∗

of hidden neurons in ELM. The proposed method (DC-
ELM) first divides the set H = {Hk}Kk=1 in two disjoint

subsets H1 = {Hk}pk=1 and H2 = {Hk}Kk=p+1 with
p = ⌈l/2⌉ is the ceiling integer function applied on l/2
and l = |H| is the number of values in H. Then, DC-
ELM proceeds by comparing accuracies achieved by
the ELM using the largest H values ofH1 andH2. The
subset that provides the best performance is selected
to be splitted again by DC, and the other subset is
discarded. The algorithm continues recursively until it
reaches a subset with only one value, that corresponds
to the best accuracy. However, a reduced number of
H values, and of ELM trainings, was executed, so that
a (possibly large) amount of time is saved. Algorithm
3 in section 3 of the supplementary material describes
DC-ELM.

Fig. 2 shows an example of operation of DC-ELM
over a set of K = 10 numbers of hidden layer sizes
H = {Hk}Kk=1 = {10k}Kk=1. We set p = ⌈K/2⌉ = 5
and H is splitted in H1={10, 20, 30, 40, 50} and
H2={60, 70, 80, 90, 100}. Their highest values are
H=50 and H=100, with accuracies (calculated train-
ing ELM) 70% and 83%, respectively. Since 83 > 70,
H2 is selected for the next iteration. Now, K=5
and p=3, so H is splitted into H1 = {60, 70, 80} and
H2 = {90, 100}, with largest values H=80 (acc=85%)
and H=100 (acc=83%), so H1 is selected. In this
case, the accuracy required for H=100 is already cal-
culated in previous iterations. The method proceeds
until a subset of size one is achieved, in this example
for H∗ = 70. Fig. 2 plots the training accuracy of
ELM and DC-ELM. Each marker is a training execu-
tion. The number of trainings is expected to be much
less than K, so DC-ELM saves many trainings, and a
considerable time, achieving the same performance as
ELM.

8 Experimental Methodology

The models MA-ELM, EMA-ELM and DC-ELM were
compared with the original ELM and the constrained
extreme learning machine, CELM [31], whose code was

DRAFT

Table 1: Values of γ and the weights of the current and previous samples for each value of n.

n γ 1− γ γ/(n− 1)
2 0.67 0.33 0.67
3 0.5 0.5 0.25
4 0.4 0.6 0.13

10 20 30 40 50 60 70 80 90 100H =

60 70 80 90 100

60 70

70

80

60 70 80 90 100

Best H =

63ACC (%) = 70 83

72 85

72

72

83

85

88

88

Figure 2: Example of the DC-ELM operation.

Figure 2: Accuracy vs. H during ELM and DC-ELM training for datasets (a) abalone and (b) letter.

downloaded from GitHub site 1. Table 1 in the supple-

1https://github.com/wentaozhu/constrained-extreme-
learning-machine

mentary material reports the list of 27 datasets used
for the experimental work. The experiments were exe-
cuted in Matlab R2018 on a computer equipped with 8

DRAFT

https://github.com/wentaozhu/constrained-extreme-learning-machine
https://github.com/wentaozhu/constrained-extreme-learning-machine

Intel Core i7-4790k processors at 4GHz, with 16 GB
RAM under Ubuntu 18.04 operative system. Each
dataset was splited into training, validation, and test-
ing sets, using standard 4-fold cross-validation. The
performance measurement was the accuracy (ACC) in
%. Each algorithm used K=50 hidden neurons from
H=10 to H=500 with step 10, so that H = {10k}Kk=1

and the number of trainings is K for ELM, that must
be trained for all the H-values, and K ′ ≤ K for MA-
ELM, EMA-ELM or DC-ELM, with K ′ depending on
the required iterations. The percentage of reduction in
time, denoted as β (in %), of our proposals with re-
spect to ELM (or CELM) is β = 100(T −T ′)/T , where
T and T ′ ≤ T are the times spent by our proposals and
by ELM, respectively.

9 Dataset List

We used a collection of 27 classification benchmark
datasets selected from the UCI Machine Learning
Repository 2, whose specifications (numbers N and I
of patterns and inputs, respectively) are listed in Table
2.

10 Comparison of MA-ELM with ELM,
CELM and MELM

Table 3 reports the accuracies achieved by MA-ELM
and ELM. This table also reports the percentage of
reduction in the number K of hidden nodes tried, de-

fined as α(%) = 100(K−K′)
K . The proposed method

EM-ELM achieves a time reduction α and β up to
94.9% and 94%, respectively, with respect to the orig-
inal ELM. The ratio between the times of ELM and
MA-ELM is 9.11, which means that MA-ELM is on
average nine times faster than the original ELM achiev-
ing the same average accuracy (79.9%). For instance,
in the seeds dataset, α=94.4% and MA-ELM achieves
more accuracy (95.3%) than ELM (93.9%), while the
times are 0.12 and 2.15 s., respectively, with a time
reduction percentage β=96.2%. From eq. 5 in the
paper, we have T/T ′ = 100/(100 − β), so that a
value β=98%, such as in dataset wine, means that
ELM is about 50 times slower than MA-ELM, because
T/T ′ = 100/(100− 98) = 100/2 = 50.
We also combined the moving average to the con-

strained, constrained sum and constrained difference
ELM (CELM, CSELM and DELM, respectively),
that provide alternatives to randomly select numbers
of hidden neurons [31]. Table 4 reports the results
of CELM, CSELM and DELM compared to their
MA- counterparts MA-CELM, MA-DSELM and
MA-DELM, respectively. The average accuracy of
MA-CELM (80.8%) outperforms CELM (80.3%)
with average β up to 92.1%. Analogously, MA-
CSELM and MA-DELM achieve 81.1% and 80.5%
outperforming CSELM and DELM (81% and 80.4%,
respectively), with average β up to 83.8% and 91.7%.

2https://archive.ics.uci.edu (Visited May, 2021)

Moreover, in mammograph dataset the CELM achieved
ACC=66.3% with β=93.7%, while EMA-CELM
achieved ACC=78.6%. With respect to MA-CSELM,
in the australian dataset achieved ACC=84.9%,
were CSELM achieved ACC=76.5% with β=90.4%.

The MA was also combined with mixed, sum and
random sum ELM (MELM, RSELM and SELM, re-
spectively [31]), and the comparison to the original
methods (i.e., without MA) is reported in Table 5.
The MA-SELM achieved an average ACC=80.5% out-
performing SELM (ACC=79.9%) with a high aver-
age β=94.3%. Besides, MA-RSELM achieved avg.
ACC=80.4% while RSELM achieved 80.2% with β
up to 94.8%. Moreover, in MA-MELM the avg.
ACC=81.0% while MELM achieved 80.6% with aver-
age β=87.5%.

11 Comparison of EMA-ELM with ELM,
CELM and MELM

In this subsection the proposed EMA-ELM is com-
pared with original ELM. As in the case of moving
average, the conducted experiments were performed
by randomly choosing the window width n randomly
in the set {2, 3, 4}. The results showed a signifi-
cant improvement in the percentage of reduction in
the number of hidden sizes tried (α), in the time
(T ′) and in the percentage of reduction in time (β),
while achieving similar or higher accuracy, as reported
in Table 6. The EMA-ELM achieved slightly bet-
ter ACC=80.0% than the original ELM (79.9%) and
with β ranging between 60% and 96%. The time
ratio (bottom of the table) reports that EMA-ELM
is in average 7.4 faster than than ELM. In addi-
tion, EMA-ELM proved that hidden size do not have
to be the largest in order to achieve better perfor-
mance in some case. For example, in the australian

dataset achieved in original ELM best H=500 with
ACC=76.2% and T=10.78 sec., where the EMA-ELM
selected H=70 with ACC=85.4% and T ′=1.19 s., α=
89% and β=86%. In the the synthetic dataset,
the original ELM achieved ACC=94.8% and T=11.76
s. with H=170 hidden neurons, while EMA-ELM
achieved better ACC=95.3% with H=120, T ′=2.62 s.,
α=77.7% and β=76%.

Analogously to MA-ELM, Table 7 reports the com-
parison of EMA-CELM, EMA-CSELM and EMA-
DELM with CELM, CSELM and DELM, respectively.
These results prove that EMA-CELM achieves aver-
age β=95.1% and average ACC=80.4%, while CELM
achives avg. ACC=80.3%. The comparison of EMA-
CSELM and CSELM leads to average β=92.6% and
avg. ACC=81.2% for EMA-CSELM outperforming
CSELM (81.0%). Moreover, in the monks2 dataset
the DELM achieves ACC=53.9%, while EMA-DELM
achieves ACC=55.3% with β=79.5%. In average over
all the datasets, EMA-DELM achieves β=96%. Note
that the percentage β of reduction in time (1.8%)
is very low in dataset chess because the condition

DRAFT

https://archive.ics.uci.edu

Table 2: Collection of UCI classification datasets.

Original Name Dataset N I
Abalone abalone 4,177 8
MicroMass msa 931 1300
Australian Sign Language signs australian 6,650 15
MONK’s Problems monks2 432 7
Chess(King-Rook vs. King) chess 18,056 6
Nursery nursery 12,960 8
Congressional Voting Records voting 435 16
Pima Indians Diabetes data pima 768 8
Connect-4 connect-4 67,557 42
Planning Relax planning 182 13
Connectionist Bench sonar 208 60
Seeds seeds 210 7
Energy efficiency energy-heat 768 8
Shuttle Landing Control shuttle 57,977 6
Hepatitis C Virus (HCV) hepatitis 1,385 29
South German Credit german 1,000 21
Image Segmentation imseg 2,310 19
SPECT Heart heart 267 22
Ionosphere ionosphere 351 34
Statlog (Vehicle Silhouettes) vehicle 946 18
Letter Recognition letter 20,000 16
Synthetic Control Chart synthetic 600 60
MAGICGamma Telescope magic 19,020 11
Tic-Tac-Toe Endgame tictac 958 9
MammographicMass mammograph 961 6
Wine wine 178 13
MiniBooNE miniboone 130065 50

Table 3: Comparison of MA-ELM and ELM.

ELM MA-ELM

Dataset ACC H T (s) ACC H T ′(s) M α(%) β(%)

abalone 66.2 500 29.27 64.6 60 2.41 6 91.8 88
australian 76.2 500 10.78 84.9 40 0.8 4 92.6 92
chess 42.4 490 304.6 30.7 100 243.75 10 20.0 80
connect-4 75.5 500 1296.25 68.1 30 119.37 3 90.8 94
energy-heat 92.8 390 7.83 88.7 90 0.82 9 89.5 82
german 65.3 240 6.69 71.9 110 1.04 11 84.5 78
heart 76.7 160 3.84 80.1 40 0.4 4 89.6 92
hepatitis 78.7 90 2.27 81.3 70 0.4 7 82.4 86
imseg 94.7 460 19.36 89.9 110 2.85 11 85.3 78
ionosphere 83.7 200 5.66 88.0 120 0.89 12 84.3 76
letter 77.0 490 157.68 71.9 200 51.54 20 67.3 60
magic 84.7 500 130.87 79.3 60 13.8 6 89.5 88
mammograph 68.4 370 6.99 77.2 40 0.51 4 92.7 92
miniboone 90.7 490 1799.25 86.3 60 228.57 6 87.3 88
monks2 52.9 280 5.07 63.4 160 1.34 16 73.6 68
msa 98.8 30 7.41 98.8 30 0.55 3 92.6 94
nursery 92.6 470 108.55 88.3 50 10.8 5 90.1 90
pima 66.8 500 7.53 76.0 50 0.55 5 92.7 90
planning 52.4 130 2.13 52.4 130 0.49 13 77.0 74
seeds 93.9 80 2.15 95.3 20 0.12 2 94.4 96
shuttle 96.8 410 406.30 90.5 80 41.31 8 89.8 84
sonar 72.6 130 4.35 72.2 90 0.66 9 84.8 82
synthetic 94.8 170 11.76 93.2 80 1.73 8 85.3 84
tictac 97.8 320 10.58 95.4 80 1.47 8 86.1 84
vehicle 80.1 480 9.55 79.3 130 1.55 13 83.8 74
voting 90.9 150 5.35 93.3 50 0.51 5 90.5 90
wine 95.0 10 2.34 95.0 10 0.12 2 94.9 98

Avg. 79.9 79.9 9.11 84.6 96.2

|A′
k − Ak| < τ on algorithm 2 is rarely fulfilled, so

the ELM must be trained for almost all the H values.

The results in Table 8 compare SELM, CELM
and CSELM to their versions combined with EMA.

The EMA-SELM achieved average β=93.1% with
ACC=80.2% outperforming SELM (79.9%). As
well, in monks2 dataset SELM achieved ACC=49%
while EMA-SELM achieves 54.8% with β=71.7%.

DRAFT

Table 4: Accuracy and β of CELM, CSELM and DELM with and without MA.

CELM MA-CELM CSELM MA-CSELM DELM MA-DELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.6 64.7 92.8 67.1 65.4 87.8 66.5 64.3 94.4
australian 78.1 85.4 94.7 76.5 84.9 90.4 77.1 85.5 93.5
chess 43.4 30.7 87.2 49.2 47.8 11.1 43.2 31.2 86.1
connect-4 76.7 73.8 85.9 77.4 73.3 82.1 76.6 73.9 86.1
energy-heat 94.4 88.1 94.6 93.7 92.7 83.1 94.3 88.1 93.4
german 60.3 71.6 91.3 64.8 69.2 84.4 65.9 70.0 92.3
heart 79.0 82.0 94.7 73.4 78.6 89.7 76.3 81.5 92.6
hepatitis 79.3 86.5 94.2 81.3 81.3 85.0 76.1 82.6 91.6
imseg 95.4 87.8 94.3 95.0 90.5 86.9 95.4 88.0 93.2
ionosphere 85.7 83.7 94.6 82.3 86.0 83.6 84.3 84.5 93.1
letter 75.7 65.2 85.8 74.2 69.7 71.3 75.7 65.8 84.3
magic 84.5 80.0 94.8 84.8 80.8 90.1 84.5 80.3 93.5
mammograph 66.3 78.6 93.7 73.3 77.4 84.7 74.1 76.9 94.9
miniboone 90.3 86.8 91.8 90.5 83.1 90.6 90.3 84.9 93.3
monks2 52.2 60.2 92.8 49.8 59.7 89.1 53.9 64.4 94.1
msa 99.4 100 94.9 99.5 99.5 93.7 99.7 100 95.4
nursery 94.3 88.9 94.0 95.5 90.5 86.3 94.3 89.3 93.0
pima 69.3 76.2 95.2 66.8 76.6 94.4 66.4 75.3 94.3
planning 50.5 64.7 88.4 54.5 54.5 78.5 49.3 62.5 84.8
seeds 92.9 93.9 93.9 93.4 93.8 93.1 93.9 94.8 94.6
shuttle 98.6 94.3 94.0 97.9 91.5 88.7 98.3 93.5 95.2
sonar 75.2 75.9 86.8 81.4 81.4 80.3 76.1 75.4 89.5
synthetic 97.2 95.3 88.8 96.7 95.3 88.0 97.5 94.0 90.5
tictac 98.5 97.5 89.9 98.5 97.6 85.0 98.8 97.9 89.2
vehicle 80.0 76.2 87.6 80.8 77.3 85.7 80.5 75.3 87.8
voting 85.8 94.2 94.5 92.7 94.5 90.4 84.5 94.5 94.4
wine 97.9 98.6 95.1 97.2 97.2 93.6 98.6 98.6 94.0

Avg. 80.3 80.8 92.1 81.0 81.1 83.8 80.4 80.5 91.7

Table 5: Accuracy and β of MELM, RSELM and SELM with and without MA.

MELM MA-MELM RSELM MA-RSELM SELM MA-SELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.9 65.2 90.6 66.4 64.2 95.4 66.3 66.0 90.8
australian 74.3 85.5 91.2 73.9 85.7 96.2 77.2 85.7 89.4
chess 46.1 36.6 68.4 43.3 30.7 87.7 49.3 48.6 5.2
connect-4 77.2 73.3 80.8 76.9 74.2 86.3 77.5 72.7 82.8
energy-heat 94.1 88.7 86.1 94.9 84.4 94.4 95.2 89.1 82.9
german 62.0 69.4 89.1 58.7 70.5 96.2 62.0 67.2 84.5
heart 74.1 84.1 94.2 77.8 82.6 98.1 71.9 79.7 82.7
hepatitis 85.2 85.2 87.7 80.6 86.5 96.5 83.3 83.3 81.2
imseg 95.4 90.9 84.0 95.5 89.0 94.0 94.9 90.2 82.3
ionosphere 82.5 86.4 89.1 84.6 85.3 95.0 85.1 85.3 76.4
letter 75.4 71.0 69.3 71.9 63.7 86.5 74.0 70.7 62.7
magic 84.6 81.1 90.7 84.0 77.9 93.7 84.8 81.0 88.4
mammograph 71.0 78.6 90.4 68.2 77.1 97.0 69.3 77.1 93.1
miniboone 90.5 87.5 90.7 89.9 83.0 93.5 90.5 88.1 87.3
monks2 46.5 62.0 85.6 53.0 65.1 98.1 49.0 61.1 86.6
msa 98.7 98.7 94.3 99.7 99.8 97.4 100 100 93.1
nursery 95.4 89.7 91.4 94.2 89.2 94.5 95.2 89.3 91.5
pima 68.5 75.5 93.9 68.4 75.7 97.2 67.3 77.3 80.1
planning 48.8 48.8 77.5 59.3 68.1 98.0 56.7 56.7 75.0
seeds 93.9 93.8 91.7 93.8 95.8 98.4 93.8 94.3 91.7
shuttle 98.7 94.2 93.1 99.0 91.1 95.1 97.9 91.6 88.8
sonar 78.0 78.4 78.5 74.6 74.4 97.1 80.4 80.4 78.8
synthetic 97.2 96.0 88.0 94.2 90.0 91.6 96.2 94.5 88.0
tictac 98.6 97.3 86.8 98.5 98.3 96.3 98.3 98.4 83.0
vehicle 79.5 78.2 82.3 79.6 75.3 94.3 80.6 76.4 86.2
voting 94.2 93.9 92.2 86.0 94.2 97.7 — — —
wine 97.8 97.8 93.5 98.6 98.6 98.4 98.6 98.6 93.2

Avg 80.6 81.0 87.5 80.2 80.4 94.8 79.9 80.5 94.3

DRAFT

Table 6: Comparison of ELM and EMA-ELM.

ELM EMA-ELM

Dataset ACC H T (s) ACC H T ′(s) M α(%) β(%)

abalone 66.2 500 29.27 64.6 70 3.52 7 88.0 86
australian 76.2 500 10.78 85.4 70 1.19 7 89.0 86
chess 42.4 490 304.6 34.9 200 118.69 20 61.0 60
connect-4 75.5 500 1296.25 68.1 30 119.69 3 90.8 94
energy-heat 92.8 390 7.83 88.7 90 0.89 9 88.6 82
german 65.3 240 6.69 68.3 140 1.7 14 74.6 72
heart 76.7 160 3.84 76.7 160 1.06 16 72.4 68
hepatitis 78.7 90 2.27 78.7 90 0.45 9 80.2 82
imseg 94.7 460 19.36 91.8 140 4.29 14 77.8 72
ionosphere 83.7 200 5.66 84.5 110 0.98 11 82.7 78
letter 77.0 490 157.68 68.5 150 40.16 15 74.5 70
magic 84.6 500 130.87 81.2 90 19.01 9 85.5 82
mammograph 68.4 370 6.99 78.5 170 1.73 17 75.3 66
miniboone 90.7 490 1799.25 88.5 100 359.54 10 80.0 80
monks2 52.9 280 5.07 64.1 20 0.21 2 95.9 96
msa 98.8 30 7.41 98.8 30 0.7 3 90.6 94
nursery 92.6 470 108.55 89.2 100 18.55 10 82.9 80
pima 66.8 500 7.53 76.8 90 1.07 9 85.8 82
planning 52.4 130 2.13 52.4 130 0.79 13 62.9 74
seeds 93.9 80 2.15 95.3 20 0.17 2 92.1 96
shuttle 96.8 410 406.30 90.8 90 57.57 9 85.8 82
sonar 72.6 130 4.35 72.6 130 1.26 13 71.0 74
synthetic 94.8 170 11.76 95.3 120 2.62 12 77.7 76
tictac 97.8 320 10.58 97.5 140 2.11 14 80.1 72
vehicle 80.1 480 9.55 79.6 150 2.24 15 76.5 70
voting 90.9 150 5.35 93.3 50 0.47 5 91.2 90
wine 95.0 10 2.34 95.0 10 0.12 1 94.9 98

Avg. 79.9 80.0 7.4 81.8 80.1

With respect to EMA-RSELM and RSELM, the
average β reaches 96.7% with ACC=80.5% compared
to 80.2% with RSELM. In the voting dataset the
RSELM achieves ACC=86% while EMA-RSELM
reaches 92.7% with β=85.6%. Moreover, comparing
EMA-MELM and MELM the average β is 95.9%,
while EMA-MELM achieves avg. ACC=81% and
MELM ACC=80.6%. In the pima dataset the MELM
recorded ACC=68.5% while EMA-MELM achieved
74.7% with β=95.9%. Again, β is very slow, in fact
it is negative (-4.1%), in dataset chess because the
accuracy is always calculated by training ELM and
never estimated using EMA, so EMA-ELM is slightly
slower than ELM.

12 Comparison of DC-ELM with ELM,
CELM and MELM

Now, we will compare DC-ELM with the original ELM
and CELMs. The divide-and-conquer method is used
to reach the best-hidden size instead of training all hid-
den neurons in traditional ways. The ELM is only
trained using the candidate numbers of hidden neu-
rons, and ignoring the unsuitable numbers of hidden
neurons. This reduces the number of training exe-
cutions in DC-ELM compared to ELM. Table 9 re-
ports the accuracy, best H and elapsed time (T) of
the original ELM, alongside with the accuracy, best
H, time (T ′), number M of training executed, per-
centage α of reduction in M and percentage β of re-

duction in the training time of DC-ELM for each UCI
benchmark classification dataset. The results show
that the proposed method DC-ELM achieves α val-
ues between 75.4% and 84.2% and β between 82% and
84%. The DC-ELM slightly overcomes ELM in terms
of ACC, with average values 80% and 79.9%, respec-
tively. For instance, in the miniboone dataset, DC-
ELM achieved T ′=355.93 sec, while the original ELM
achieved T= 1799.25 s. with an ACC (90.6%) close
to ELM (90.7%), with α=80.2% and β=84%. Regard-
ing the shuttle dataset, DC-ELM achiveds T ′=85.04
s. and ACC=97.5% outperforming ELM (T=406.30 s.,
ACC=96.8%) with α=79.1% and β= 84%. In addition,
in the nursery dataset, DC-ELM achieved T ′=21.78
s. while the ELM spends T=108.55 s., whereas the
ACC=92.7% in DC-ELM and 92.6% in ELM, with
α=79.9% and β=84%.

The results also showed that there is no significant
difference between ELM and DC-ELM in choosing the
appropriate H. For example, in dataset tictac, the
original ELM selected H=320 with T=10.58 s., which
is the same H value selected by DC-ELM with lower
T ′=2.21 s., with α=79.1% and β=84%. In german

dataset, the original ELM selected H=240 and spent
T=6.69 s., which is the same H selected by DC-ELM
with T ′=1.51 s., α=77.4% and β=80%, and both meth-
ods achieved the same ACC=65.3%. This proves that
DC-ELM has higher ACC and more speed in choosing
the appropriate hidden neuron compared to the origi-
nal ELM. The time ratio (last line in Table 9) between

DRAFT

Table 7: Accuracy and β of CELM, CSELM and DELM with and without EMA.

CELM EMA-CELM CSELM EMA-CSELM DELM EMA-DELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.6 65.6 84.5 67.1 65.6 82.0 66.5 65.1 88.1
australian 78.1 85.2 78.8 76.5 84.1 71.2 77.1 85.2 79.3
chess 43.4 41.9 9.5 49.2 49.2 1.1 43.2 43.2 1.8
connect-4 76.7 74.4 76.9 77.4 75.2 63.3 76.6 74.2 79.4
energy-heat 94.4 89.7 77.8 93.7 92.7 74.3 94.3 88.5 80.2
german 60.3 64.8 66.4 64.8 64.8 52.3 65.9 67.5 60.8
heart 79.0 79.0 72.1 73.4 73.4 69.5 76.3 76.3 69.5
hepatitis 79.3 79.3 80.8 81.3 81.3 78.5 76.1 76.1 82.8
imseg 95.4 92.2 76.9 95.0 92.5 79.4 95.4 92.0 77.0
ionosphere 85.7 85.4 81.1 82.3 82.3 73.8 84.3 86.0 76.4
letter 75.7 73.6 34.5 74.2 72.9 29.0 75.7 73.1 45.3
magic 84.5 81.4 85.5 84.8 81.8 86.2 84.5 81.1 88.6
mammograph 66.3 78.3 84.2 73.3 75.7 59.8 74.1 76.9 95.6
miniboone 90.3 87.6 85.2 90.5 88.5 79.6 90.3 87.1 86.0
monks2 52.2 49.5 72.2 49.8 56.9 81.0 53.9 55.3 79.5
msa 99.4 99.4 93.0 99.5 99.5 89.4 99.7 99.7 93.8
nursery 94.3 88.9 87.0 95.5 93.5 66.8 94.3 89.4 87.8
pima 69.3 75.8 95.1 66.8 72.9 55.5 66.4 76.8 89.3
planning 50.5 50.5 70.9 54.5 54.5 69.5 49.3 49.3 74.3
seeds 92.9 93.3 90.2 93.4 93.4 86.9 93.9 92.9 90.7
shuttle 98.6 94.8 91.2 97.9 92.1 83.3 98.3 95.6 91.7
sonar 75.2 75.2 73.8 81.4 81.4 73.4 76.1 76.1 73.6
synthetic 97.2 95.3 85.1 96.7 96.0 82.3 97.5 95.8 84.0
tictac 98.5 98.0 84.7 98.5 98.3 75.0 98.8 98.0 85.6
vehicle 80.0 80.5 63.4 80.8 82.0 68.8 80.5 80.5 64.1
voting 85.8 94.2 85.2 92.7 94.5 85.8 84.5 93.9 78.8
wine 97.9 97.9 92.8 97.2 97.2 92.6 98.6 98.6 93.2

Avg. 80.3 80.4 95.1 81.0 81.2 92.6 80.4 80.5 96.0

Table 8: Accuracy and β of MELM, RSELM and SELM with and without EMA.

MELM EMA-MELM RSELM EMA-RSELM SELM EMA-SELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.9 65.6 82.3 66.4 65.0 87.4 66.3 65.0 87.2
australian 74.3 84.9 94.5 73.9 83.5 78.4 77.2 85.7 87.0
chess 46.1 46.1 -5.6 43.3 43.3 -0.4 49.3 49.3 -4.1
connect-4 77.2 74.1 77.3 76.9 74.8 74.5 77.5 74.1 75.6
energy-heat 94.1 86.5 95.4 94.9 90.9 86.7 95.2 91.1 76.8
german 62.0 70.8 86.3 58.7 58.7 64.2 62.0 64.8 55.3
heart 74.1 78.2 81.1 77.8 77.8 82.3 71.9 74.5 66.3
hepatitis 85.2 85.2 80.2 80.6 80.6 92.7 83.3 83.9 92.4
imseg 95.4 91.5 77.0 95.5 92.5 79.4 94.9 91.6 77.2
ionosphere 82.5 83.0 76.1 84.6 85.4 85.9 85.1 85.3 74.2
letter 75.4 72.7 42.6 71.9 71.8 00.3 74.0 71.1 45.2
magic 84.6 81.8 85.2 84.0 80.6 82.1 84.8 81.0 87.9
mammograph 71.0 78.6 90.4 68.2 77.4 73.7 69.3 77.1 93.1
miniboone 90.5 87.7 84.5 89.9 86.7 76.3 90.5 87.6 84.0
monks2 46.5 54.6 79.3 53.0 53.0 53.8 49.0 54.8 71.7
msa 98.7 98.7 93.1 99.7 99.7 93.0 100 100 92.2
nursery 95.4 90.7 82.6 94.2 89.5 81.1 95.2 93.0 71.1
pima 68.5 74.7 95.9 68.4 75.7 59.5 67.3 75.5 86.8
planning 48.8 48.8 72.8 59.3 59.3 87.9 56.7 56.7 66.2
seeds 93.9 93.8 89.8 93.8 93.8 95.1 93.8 94.3 88.6
shuttle 98.7 93.6 90.8 99.0 93.0 87.8 97.9 91.3 87.2
sonar 78.0 78.0 74.9 74.6 74.6 87.6 80.4 80.4 73.8
synthetic 97.2 94.7 86.7 94.2 92.7 85.5 96.2 95.8 83.9
tictac 98.6 98.5 79.2 98.5 98.3 89.0 98.3 97.8 80.7
vehicle 79.5 80.9 68.4 79.6 83.0 54.2 80.6 76.4 85.1
voting 94.2 94.5 84.0 86.0 92.7 85.6 — — —
wine 97.8 97.8 91.6 98.6 98.6 97.0 98.6 98.6 90.5

Avg. 80.6 81.0 95.9 80.2 80.5 96.7 79.9 80.2 93.1

DRAFT

Table 9: Comparison between DC-ELM and ELM.

ELM DC-ELM

Dataset ACC H T (s) ACC H T ′(s) M α(%) β(%)

abalone 66.2 500 29.27 66.2 500 6.22 8 78.8 84
australian 76.2 500 10.78 76.2 500 2.21 8 79.5 84
chess 42.4 490 304.6 42.1 500 59.68 8 80.4 84
connect-4 75.5 500 1296.25 75.5 500 268.51 8 79.3 84
energy-heat 92.8 390 7.83 93.0 500 1.72 8 78.0 84
german 65.3 240 6.69 65.3 240 1.51 10 77.4 80
heart 76.7 160 3.84 76.7 160 0.69 8 82.0 84
hepatitis 78.7 90 2.27 78.7 90 0.45 8 80.2 84
imseg 94.7 460 19.36 94.9 500 4.06 8 79.0 84
ionosphere 83.7 200 5.66 84.9 210 1.15 9 79.7 82
letter 77.0 490 157.68 77.0 500 32.23 8 79.6 84
magic 84.7 500 130.87 84.7 500 29.36 9 77.6 82
mammograph 68.4 370 6.99 63.2 500 1.72 8 75.7 84
miniboone 90.7 490 1799.25 90.6 500 355.93 8 80.2 84
monks2 52.9 280 5.07 56.3 320 1.12 8 77.9 84
msa 98.8 30 7.41 99.9 40 1.17 8 84.2 84
nursery 92.6 470 108.55 92.7 500 21.78 8 79.9 84
pima 66.8 500 7.53 66.8 500 1.69 8 77.6 84
planning 52.4 130 2.13 52.7 130 0.45 9 78.9 82
seeds 93.9 80 2.15 93.9 90 0.45 8 79.1 84
shuttle 96.8 410 406.30 97.5 500 85.04 8 79.1 84
sonar 72.6 130 4.35 72.6 130 0.87 9 80.0 82
synthetic 94.8 170 11.76 94.8 210 2.33 9 80.2 82
tictac 97.8 320 10.58 97.8 320 2.21 8 79.1 84
vehicle 80.1 480 9.55 79.8 500 2.18 8 77.2 84
voting 90.9 150 5.35 91.0 180 1.06 9 80.2 82
wine 95.0 10 2.34 96.5 40 0.44 8 81.2 84

Avg. 79.9 80.0 4.9 79.3 83.4

Table 10: Accuracy and β of CELM, CSELM and DELM with and without DC.

CELM DC-CELM CSELM DC-CSELM DELM DC-DELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.6 66.6 75.0 67.1 66.4 78.3 66.5 67.1 80.4
australian 78.1 76.4 79.2 76.5 79.4 79.5 77.1 78.4 78.2
chess 43.4 43.4 80.0 49.2 49.1 80.7 43.2 49.2 81.0
connect-4 76.7 76.7 80.6 77.4 77.5 81.6 76.6 77.4 81.5
energy-heat 94.4 94.2 77.1 93.7 94.4 78.6 94.3 93.9 78.2
german 60.3 57.6 77.7 64.8 61.5 79.5 65.9 61.8 80.3
heart 79.0 79.0 80.3 73.4 68.9 77.9 76.3 73.4 80.6
hepatitis 79.3 79.3 79.1 81.3 80.6 81.8 76.1 81.3 82.8
imseg 95.4 95.8 78.0 95.0 95.4 80.9 95.4 95.0 78.1
ionosphere 85.7 85.7 81.5 82.3 81.7 81.8 84.3 82.3 80.7
letter 75.7 75.7 79.6 74.2 74.0 81.0 75.7 74.2 79.8
magic 84.5 84.5 79.7 84.8 84.8 78.0 84.5 84.8 78.2
mammograph 66.3 67.9 74.9 73.3 69.4 77.2 74.1 77.1 80.2
miniboone 90.3 90.3 80.0 90.5 90.5 80.6 90.3 90.5 81.1
monks2 52.2 52.2 76.3 49.8 50.7 76.9 53.9 47.5 78.0
msa 99.4 100 83.9 99.5 100 85.4 99.7 100 86.5
nursery 94.3 94.3 79.3 95.5 95.7 80.1 94.3 95.6 80.8
pima 69.3 69.3 76.3 66.8 67.8 77.8 66.4 67.7 76.6
planning 50.5 51.6 77.5 54.5 50.5 79.3 49.3 54.5 79.3
seeds 92.9 93.3 80.7 93.4 95.8 83.0 93.9 94.8 80.5
shuttle 98.6 98.8 78.6 97.9 98.1 78.9 98.3 98.1 80.3
sonar 75.2 75.2 79.2 81.4 79.8 81.2 76.1 81.4 81.2
synthetic 97.2 97.2 79.5 96.7 96.0 79.9 97.5 96.7 78.4
tictac 98.5 98.5 78.5 98.5 98.4 80.5 98.8 98.5 80.4
vehicle 80.0 78.9 75.8 80.8 77.7 76.9 80.5 79.7 75.1
voting 85.8 86.9 75.2 92.7 93.9 82.2 84.5 92.7 82.3
wine 97.9 98.6 80.8 97.2 98.6 83.8 98.6 99.3 83.1

Avg. 80.3 80.3 78.7 81.0 80.6 80.1 80.4 81.2 80.2

DRAFT

Table 11: Accuracy and β of MELM, RSELM and SELM with and without DC.

MELM DC-MELM RSELM DC-RSELM SELM DC-SELM

Dataset ACC ACC β ACC ACC β ACC ACC β

abalone 66.9 66.9 76.6 66.4 66.4 78.6 66.3 66.1 76.8
australian 74.3 74.3 78.5 73.9 73.9 77.8 77.2 77.7 77.0
chess 46.1 46.1 79.8 43.3 43.3 80.1 49.3 49.3 80.2
connect-4 77.2 77.2 80.6 76.9 76.9 81.1 77.5 77.5 80.0
energy-heat 94.1 93.9 76.9 94.9 94.9 78.6 95.2 93.6 76.3
german 62.0 63.3 78.2 58.7 58.1 79.6 62.0 59.0 77.1
heart 74.1 70.4 78.1 77.8 77.8 85.1 71.9 68.2 76.2
hepatitis 85.2 85.2 81.0 80.6 80.6 88.6 83.3 81.3 78.0
imseg 95.4 95.4 78.5 95.5 95.6 75.7 94.9 95.4 78.2
ionosphere 82.5 81.7 78.6 84.6 84.6 84.4 85.1 85.1 78.8
letter 75.4 75.4 79.6 71.9 71.9 79.7 74.0 74.0 79.7
magic 84.6 84.6 79.2 84.0 84.0 79.3 84.8 84.8 79.4
mammograph 71.0 71.0 77.0 68.2 67.9 76.8 69.3 72.9 74.6
miniboone 90.5 90.5 81.2 89.9 89.9 80.3 90.5 90.5 79.7
monks2 46.5 49.3 76.8 53.0 53.0 76.4 49.0 52.6 75.5
msa 98.7 98.7 85.2 100 99.2 79.2 100 99.9 83.9
nursery 95.4 95.4 77.8 94.2 94.2 79.3 95.2 95.2 79.1
pima 68.5 68.5 73.4 68.4 68.4 76.9 67.3 67.5 77.0
planning 48.8 48.8 77.5 59.3 59.3 86.8 56.7 56.7 76.4
seeds 93.9 94.8 80.3 93.8 95.2 88.5 93.8 93.9 79.0
shuttle 98.7 98.8 80.4 99.0 99.1 78.9 97.9 98.1 76.2
sonar 78.0 78.0 80.1 74.6 74.6 86.7 80.4 76.4 78.1
synthetic 97.2 97.2 78.0 94.2 94.2 82.8 96.2 96.2 79.1
tictac 98.6 98.8 77.7 98.5 98.6 79.0 98.4 98.4 78.0
vehicle 79.5 80.7 76.7 79.6 79.6 77.3 80.6 78.7 76.6
voting 94.2 94.2 79.8 86.0 85.1 81.6 — — —
wine 97.8 97.9 81.3 98.6 98.6 89.3 98.6 98.6 83.7

Avg. 80.6 80.6 85.2 80.2 80.2 81.1 79.9 79.6 76.2

the original ELM and DC-ELM is T/T ′ =4.87, which
means that ELM is about five times slower than DC-
ELM.

Similarly to MA-ELM and EMA-ELM, the proposed
method DC-ELM was also combined with SELM,
CELM and CSELM. The results are reported in Table
10, proving that DC-ELM achieves accuracy similar or
higher than CSELMs with high β values. The DC-
CELM achieves an average β=78.7%, with the same
ACC=80.3% as CELM. Comparing CSELM and DC-
CSELM, the percentage of training time reduction β
ranges between 76.9% to 85.3%. Considering aver-
age values, the average ACC is 80.6% and 81% for
DC-CSELM and CSELM, respectively. For instance,
in shuttle dataset the CSELM achieved ACC=97.9%
while DC-CSELM achieved ACC=98.1 with β=78.9%.
The combination of DC-DELM and DELM, leaded to
a β range between from 75.1% and 86.5%, with an
average ACC=81.2% slightly higher than DC-DELM
(80.4%). In hepatitis dataset DELM and DC-
DELM achieve ACC=76.1% and 81.3%, respectively,
while in connect− 4 dataset, DC-ELM outperformed
DELM with ACC=77.4% and 76.6%, respectively, with
β=81.5%.

Table 11 reports the comparison of MELM, RSELM
and SELM with and without DC. The DC-MELM
(ACC=80.6%) equals MELM in terms of performance
leading to a high average β up to 85.2%. The com-
parison of DC-RSELM and RSELM reports a β value
ranging from 76.4% to 89.3%, also with the same aver-

age ACC=80.2%. Finally, the average ACC was 79.9%
and 79.6% using SELM and DC-SELM, also with a
high average β=76.2%.

13 Results and Discussion

Table 12 compares the average results of the proposed
methods, MA-ELM, EMA-ELM and DC-ELM in terms
of Acc and β to: 1) classical ELM, in column 3; 2)
constrained CELM, constrained sum CSELM, and dif-
ference DELM, in columns 4-6; and 3) mixed MELM,
random sum RSELM and sum SELM, in columns 7-9.
These networks are alternatives existing in the litera-
ture to select the number of hidden neurons [31]. The
values of Acc and β in Table 12 are averaged over the
27 datasets (section 8). The detailed comparison for
each dataset is reported in Tables 2-10 (sections 5-7)
of the supplementary material.

The third column of Table 12 compares MA-ELM,
EMA-ELM and DC-ELM to the classical ELM. The
MA, EMA and DC achieve equal or slightly higher ac-
curacy of the ELM, but they largely accelerate the se-
lection of H with time reductions (β) above 80% reach-
ing 96.2% with MA. Thus, MA-ELM performed the H
tuning in only 3.8% of the time spent by ELM, with
similar or better accuracy.

Columns 4-6 report the comparison of CELM,
CSELM and DELM to their corresponding versions
using MA, EMA and DC. These versions perform
better, specially MA-CELM that achieves 80.8% while

DRAFT

Table 12: Comparison of Acc and β, both in %, of MA, EMA and DC with ELM, CELM, CSELM and DELM,
and with MELM, RSELM and SELM (in bold the best results for each column).

ELM CELM CSELM DELM MELM RSELM SELM Mean
Acc 79.9 80.3 81 80.4 80.6 80.2 79.9 80.33

Acc
MA 79.9 80.8 81.1 80.5 81 80.4 79.9 80.51
EMA 80 80.4 81.2 80.5 81 80.5 80.2 80.54
DC 80 80.3 80.6 81.2 80.6 80.2 79.9 80.40

β
MA 96.2 82.1 83.8 91.7 87.5 94.8 94.3 90.06
EMA 80.1 95.1 92.6 96 95.9 96.7 93.1 92.78
DC 83.4 80.1 80.1 80.2 85.2 81.1 76.2 80.90

CELM achieves 80.3%. The difference is lower with
CSELM (81.2% and 81.1% with EMA-CSELM and
CSELM). However, DC-DELM outperforms DELM,
81.2% vs. 80.4%. In terms of β (lower part of columns
4-6), the time savings are again above 80%, being
specially higher for EMA versions, that are above
92%.
Finally, columns 7-9 of Table 12 compare MELM,

RSELM and SELM with their variants using MA,
EMA and DC. The MA-MELM and EMA-MELM
achieve 81% of accuracy, outperforming MELM
(80.6%). Besides, EMA-RSELM outperforms RSELM
(80.5% vs. 80.2%), and EMA-SELM outperforms
SELM (80.2% vs. 79.9%). The EMA versions achieve
the highest β with MELM and RSELM (above 95%),
while and MA-SELM achieves the highest β (94.3%).
Comparing MA, EMA and DC, the last column re-

ports the average values over columns 3-9, reporting
that EMA versions achieve both the highest accuracy
and time savings, about 92.78%, while MA and DC
achieve only 90.06% and 80.9%, respectively. There-
fore, EMA seems to be the fastest approach, although
MA-ELM achieves the highest time saving (β=96.2%)
with respect to ELM, being EMA-ELM and DC-ELM
much slower (80-83%). Overall, MA-ELM, EMA-
ELM and DC-ELM perform fairly well, achieving accu-
racy slightly above the classical ELM and the CELM,
CSELM, SELM, MELM, RSELM and SELM networks,
and accelerating very much the hyper-parameter tun-
ing.

14 Conclusions

The number H of hidden nodes influences the ELM
performance and speed, so great generalization re-
quires an optimal H. We propose MA-ELM, EMA-
ELM and DC-ELM, that use respectively moving-
average, exponential-moving-average and divide-and-
conquer to reduce the number of trainings required to
select H. They achieve equal or slighly higher accu-
racy than ELM, constrained (CELM), constrained sum
(CSELM) and constrained difference (DELM), mixed
(MELM), sum (SELM) and random sum (RSELM).
However, they reduce the time spent in training to trial
different H values between 80% and 97%, depending
on the dataset and the ELM version, specially with

MA and EMA, that achieves the largest accuracy and
time savings. The MA, EMA and DC-ELM may bring
significant performance advantages, compared to ex-
isting alternatives, in applications where factors limit
the number of hidden neurons, such a multiuser eye-
tracking system [1] and other real-life applications.

References

[1] Al-Btoush, A., Abbadi, M., Hassanat, A.,
Tarawneh, A., Hasanat, A., and Prasath,
S. New features for eye-tracking systems: Prelim-
inary results. In Intl Conf Inf Comm Syst (2019),
IEEE, pp. 179–184.

[2] Al-Btoush, A., Fernández-Delgado, M.,
Cernadas, E., and Barro, S. Extreme learn-
ing machine with confidence interval based bias
initialization. In 2021 Second International Con-
ference on Intelligent Data Science Technologies
and Applications (IDSTA) (2021), IEEE, pp. 23–
30.

[3] Al Nawaiseh, A. J., Albtoush, A.,
Al Nawaiseh, S. J., et al. Evaluate database
management system quality by analytic hierarchy
process (ahp) and simple additive weighting (saw)
methodolog. MENDEL 28, 2 (2022), 67–75.

[4] Albtoush, A., Fernández-Delgado, M.,
Cernadas, E., and Barro, S. Quick ex-
treme learning machine for large-scale classifica-
tion. Neural Computing and Applications 34, 8
(2022), 5923–5938.

[5] Cao, L., Yue, Y., Zhang, Y., and Cai, Y. Im-
proved crow search algorithm optimized extreme
learning machine based on classification algorithm
and application. IEEE Access 9 (2021), 20051–
20066.

[6] Dani, Y., Gunawan, A. Y., Khodra, M. L.,
and Indratno, S. W. Detecting outliers us-
ing modified recursive pca algorithm for dynamic
streaming data. MENDEL 29, 2 (2023), 237–244.

[7] Deng, W., Bai, Z., Huang, G., and Zheng,
Q. A fast SVD-hidden-nodes based extreme learn-
ing machine for large-scale data analytics. Neural
Netw 77 (2016), 14–28.

[8] Elsheikh, A., Saba, A., Elaziz, M., Lu, S.,
et al. Deep learning-based forecasting model for

DRAFT

COVID-19 outbreak in Saudi Arabia. Process Saf
Environ 149 (2021), 223–233.

[9] Feng, G., Huang, G.-B., Lin, Q., and Gay,
R. Error minimized extreme learning machine
with growth of hidden nodes and incremental
learning. IEEE T Neur Netw 20, 8 (2009), 1352–
1357.

[10] Hsieh, C.-J., Si, S., and Dhillon, I. A divide-
and-conquer solver for kernel support vector ma-
chines. In Intl Conf Mach Learn (2014), pp. 566–
574.

[11] Huang, G.-B., and Chen, L. Convex incremen-
tal extreme learning machine. Neurocomputing 70,
16-18 (2007), 3056–3062.

[12] Huang, G.-B., and Chen, L. Enhanced ran-
dom search based incremental extreme learning
machine. Neurocomputing 71, 16-18 (2008), 3460–
3468.

[13] Huang, G.-B., Zhu, Q.-Y., Mao, K., Siew,
C.-K., Saratchandran, P., and Sundarara-
jan, N. Can threshold networks be trained di-
rectly? IEEE T Circuits Syst II: Express Briefs
53, 3 (2006), 187–191.

[14] Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K.
Extreme learning machine: a new learning scheme
of feedforward neural networks. In IEEE Intl J
Conf Neur Netw (2004), vol. 2, pp. 985–990.

[15] Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K.
Extreme learning machine: theory and applica-
tions. Neurocomputing 70, 1-3 (2006), 489–501.

[16] Huang, Y., and Lai, D. Hidden node opti-
mization for extreme learning machine. AASRI
Procedia 3 (2012), 375–380. Conf on Modelling,
Identification and Control.

[17] Lai, J., Wang, X., Li, R., Song, Y., and
Lei, L. BD-ELM: a regularized extreme learn-
ing machine using biased dropconnect and biased
dropout. Math Probl Eng 2020 (2020).

[18] Lan, Y., Soh, Y. C., and Huang, G.-B. A
constructive enhancement for online sequential ex-
treme learning machine. In Intl J Conf Neural
Netw (2009), Ieee, pp. 1708–1713.

[19] Mahmoudi, M. R., and Baroumand, S. Mod-
eling the stochastic mechanism of sensor using a
hybrid method based on seasonal autoregressive
integrated moving average time series and gen-
eralized estimating equations. ISA Transactions
(2021), 300–305.

[20] Marques, N. C., and Gomes, C. Implement-
ing an intelligent moving average with a neural
network. In Proc European Conf Artif Intel. IOS
Press, 2010, pp. 1129–1130.

[21] Miche, Y., Sorjamaa, A., Bas, P., Simula,
O., Jutten, C., and Lendasse, A. OP-ELM:
optimally pruned extreme learning machine. IEEE
T Neur Netw 21, 1 (2009), 158–162.

[22] Rong, H.-J., Ong, Y.-S., Tan, A.-H., and
Zhu, Z. A fast pruned-extreme learning machine
for classification problem. Neurocomputing 72, 1-3
(2008), 359–366.

[23] Schuler, J. P. S., Romani, S., Abdel-
Nasser, M., Rashwan, H., and Puig, D.
Grouped pointwise convolutions reduce parame-
ters in convolutional neural networks. MENDEL
28, 1 (2022), 23–31.

[24] Sheela, K. G., and Deepa, S. N. Review on
methods to fix number of hidden neurons in neural
networks. Math Probl Eng 2013 (2013), 1–11.

[25] Similä, T., and Tikka, J. Multiresponse sparse
regression with application to multidimensional
scaling. In Intl Conf Artif Neural Netw (2005),
Springer, pp. 97–102.

[26] Song, S., Wang, M., and Lin, Y. An improved
algorithm for incremental extreme learning ma-
chine. Syst Sci & Control Eng 8, 1 (2020), 308–
317.

[27] Suresh, S., Saraswathi, S., and Sundarara-
jan, N. Performance enhancement of extreme
learning machine for multi-category sparse data
classification problems. Engin Appl Artif Intel 23,
7 (2010), 1149–1157.

[28] Uribe, I. M. Predictive model of the enso phe-
nomenon based on regression trees. MENDEL 29,
1 (2023), 7–14.

[29] Yu, D., and Deng, L. Efficient and effective
algorithms for training single-hidden-layer neural
networks. Pattern Recogn Lett 33, 5 (2012), 554–
558.

[30] Zhu, Q.-Y., Qin, A. K., Suganthan, P. N.,
and Huang, G.-B. Evolutionary extreme learn-
ing machine. Patt Recogn 38, 10 (2005), 1759–
1763.

[31] Zhu, W., Miao, J., and Qing, L. Constrained
extreme learning machines: A study on classifica-
tion cases. arXiv:1501.06115, 2015.

DRAFT

	1 Introduction
	2 Extreme Learning Machine
	3 Algorithm of MA-ELM and EMA-ELM
	4 Algorithm of DC-ELM
	5 Moving Average Extreme Learning Machine
	6 Exponential Moving Average Extreme Learning Machine
	7 Divide-and-conquer Extreme Learning Machine
	8 Experimental Methodology
	9 Dataset List
	10 Comparison of MA-ELM with ELM, CELM and MELM
	11 Comparison of EMA-ELM with ELM, CELM and MELM
	12 Comparison of DC-ELM with ELM, CELM and MELM
	13 Results and Discussion
	14 Conclusions
	References

