
MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

ISSN: 1803-3814 (Printed), 2571-3701 (Online)
https://doi.org/10.13164/mendel.2023. .307

A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for
Cyber Threats Detection

Reham Amin�, Ghada El-Taweel, Ahmed Fouad Ali, Mohamed Tahoun
Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia, 41522, Egypt

reham amin@ci.suez.edu.eg�

Abstract
The vast amounts of data, lack of scalability, and low detection rates of traditional
intrusion detection technologies make it impossible to keep up with evolving and
increasingly sophisticated cyber threats. Therefore, there is an urgent need to
detect and stop cyber threats early. Deep Learning has greatly improved intrusion
detection due to its ability to self-learn and extract highly accurate features. In
this paper, a Hybrid XG Boosted and Long Short-Term Memory algorithm (HXG-
BLSTM) is proposed. A comparative analysis is conducted between the computa-
tional performance of six established evolutionary computation algorithms and the
recently developed bio-inspired metaheuristic algorithm called Zebra Optimisation
Algorithm. These algorithms include the Particle Swarm Optimisation Algorithm,
the Bio-inspired Algorithms, Bat Optimisation Algorithm, Firefly Optimisation Al-
gorithm, and Monarch Butterfly Optimisation Algorithm, as well as the Genetic
Algorithm as an Evolutionary Algorithm. The dimensionality curse has been miti-
gated by using these metaheuristic methods for feature selection, and the results
are compared with the wrapper-based feature selection XGBoost algorithm. The
proposed algorithm uses the CSE-CIC -IDS2018 dataset, which contains the lat-
est network attacks. XGBoost outperformed the other FS algorithms and was
used as the feature selection algorithm. In evaluating the effectiveness of the
newly proposed HXGBLSTM, binary and multi-class classifications are considered.
When comparing the performance of the proposed HXGBLSTM for cyber threat
detection, it outperforms seven innovative deep learning algorithms for binary clas-
sification and four of them for multi-class classification. Other evaluation criteria
such as recall, F1 score, and precision have been also used for comparison. The re-
sults showed that the best accuracy for binary classification is 99.8%, with F1-score
of 99.83%, precision of 99.85%, and recall of 99.82%, in extensive and detailed
experiments conducted on a real dataset. The best accuracy, F1-score, precision,
and recall for multi-class classification were all around 100%, which does give the
proposed algorithm an advantage over the compared ones.

Keywords: Cyber Security, Intrusion Detection, Deep Learning, Feature Selection.

Received: 18 November 2023
Accepted: 11 December 2023

Online: 17 December 2023
Published: 20 December 2023

1 Introduction

Since 2007, Deep Learning (DL) has become an increas-
ingly important subfield of machine learning in various
industries, including speech and pattern recognition,
healthcare, vehicle design, image processing, financial
forecasting, transportation, agriculture and legal ap-
plications, to name a few [16]. In addition, online
Skype translation, automatic image captioning, and
voice search (using technologies such as Amazon Alexa,
Google Assistant, and Apple Inc. Siri) are some exam-
ples of successful DL applications [29]. Researchers and
technology companies prefer to use DL to process big
data effectively and efficiently [14, 36]. Large compa-
nies such as Facebook, Amazon, Google, and Microsoft
are also using Deep Learning algorithms to analyze
massive amounts of data on a daily basis. Artificial
neural networks (ANN) are modeled after neurons in

the human brain and are used in DL. The number of
layers exhibited, which can be thousands, is referred to
as deep [36].

There are many reasons why DL is well-liked. First
of all, it can leverage large amounts of data for the
best training and testing. For example, the ImageNet
dataset of thousands of photos is easily accessible [31].
In addition to this the use of low-cost GPUs that can
benefit from cloud services and are often used to train
data [16]. With traditional methods of data analysis, it
is difficult to properly understand the data and uncover
important facts, even with machine learning algorithms
[38]. Therefore, Deep Learning is used to dig deep into
the network to obtain accurate and precise data.

The DL-based algorithm has many advantages when
it comes to cyber threat detection. Security risks that
are constantly changing include denial-of-service (DoS)

307

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

attacks, data spying, spoofing, and network resource
occupancy, to name a few [2]. The traditional Deep
Learning-based system is trained on a large dataset
and then computes a variety of unique security threats.
The system is then implemented in the real-world com-
munications environment, where it can quickly detect
the presence of hostile entities on the network in ques-
tion [46]. All of these factors suggest that critical se-
curity measures are urgently needed to address these
potential security issues, which DL can [25].

In addition to applying DL algorithms to real-world
situations, this type of intrusion detection system as-
sessment and tuning (IDS) uses realistic and modern
datasets that depict both typical and anomalous net-
work activity. In recent decades, several initiatives
have been undertaken to create realistic datasets. Re-
searchers have been able to adopt and evaluate more
modern and optimistic datasets, although some of
them have come under criticism for their shortcomings,
lack of heterogeneity, limited availability, and critical
level. It is believed that the selection of an appro-
priate dataset for intrusion detection plays a key role
in ensuring the highly successful performance of Deep
Learning-based IDs. Moreover, datasets are outdated
due to the extensive nature of network attacks that
have evolved significantly in recent years. To create an
effective DL-based IDS, it is necessary to consider the
current developments in IDS datasets [30].

The inclusion of a real traffic dataset, new and recent
attack scenarios in CSE-CIC-IDS -2018 as opposed to
recent datasets was one of several aspects considered
in the selection of this dataset [8, 7, 33, 32, 2, 22, 26].
The CSE-CIC -IDS2018 dataset, while new, has been
used to evaluate and compare various DL algorithms.
It is available to the public at [13] and is very well or-
ganized. The dataset has been used extensively by the
scientific community to benchmark cybersecurity be-
cause it contains a variety of attacks performed with
different tools, arranged in a timeline, and combines
regular and abnormal packet flows from the network
[8]. In addition, the traffic was dynamically generated
to mimic an enterprise network. The dataset also con-
tains the original packet capture or PCAP files with
each collected packet, in addition to the features col-
lected from the network flows. This increases flexibility
when using different pre-treatment and processing al-
gorithms [5].

Numerous metaheuristic algorithms are available
for use in feature selection. Metaheuristics can be
classified into two main categories: single-solution al-
gorithms and population-based algorithms [44]. Single
solution-based algorithms may lead to local optima
and prevent finding the global optimum. However,
population-based algorithms are naturally able to
avoid local optima [4, 39]. The population-based
algorithms are classified into: evolutionary algorithms,
swarm intelligence, bio-inspired algorithms, and
physics based algorithms. Attempting each of these
algorithms is challenging and time consuming. There-

fore, we select the Zebra Optimization Algorithm
(ZOA), a recently created bio-inspired metaheuristic
algorithm, and six other long-standing algorithms
from among them.

In this paper, a Hybrid XG Boosted and Long
Short-Term Memory algorithm (HXGBLSTM) is pro-
posed. Additionally, a comparative analysis is con-
ducted between the computational performance of
six established evolutionary computation algorithms
and the recently developed bio-inspired metaheuris-
tic algorithm called Zebra Optimisation Algorithm
(ZOA) [41]. These algorithms include the Parti-
cle Swarm Optimisation Algorithm (PSO) [34], the
Bio-inspired Algorithms (Bat Optimisation Algorithm
(BOA) [17], Firefly Optimisation Algorithm (FOA)
[12], and Monarch Butterfly Optimisation Algorithm
(MBOA) [40], as well as the Genetic Algorithm (GA)
[37] as an Evolutionary Algorithm. The dimension-
ality curse has been mitigated by using these meta-
heuristic methods for feature selection, and the results
are compared with the wrapper-based feature selection
XGBoost algorithm. The proposed algorithm uses the
CSE-CIC -IDS2018 dataset, which contains the latest
network attacks. XGBoost outperformed the other FS
algorithms and was used as the feature selection algo-
rithm.

Several authors compared different algorithms to
evaluate the CSE-CIC -IDS2018 dataset. These deep
impressions served as our motivation to thoroughly in-
vestigate the different deep learning algorithms used to
analyze the CSE-CIC -IDS2018 dataset and tune the
different crucial parameters that can be used to im-
prove the DL algorithms and their learning processes
on the dataset. Below is the main contribution of the
paper:

• We have proposed a hybrid defensive algorithm
called HXGBLSTM that combines the LSTM al-
gorithm and the XGBoost algorithm for feature
selection.

• We have compared six metahuristic algorithms
against the proposed algorithm in order to select
features for binary classification: Zebra Optimi-
sation Algorithm (ZOA), Bat Optimisation Algo-
rithm (BOA), Particle Swarm Optimisation Al-
gorithm (PSO), Firefly Optimisation Algorithm
(FOA), Monarch Butterfly Optimisation Algo-
rithm (MBOA), and Genetic Algorithm (GA).

• We improved the accuracy of the proposed al-
gorithm using two scenarios with the standard
LSTM (i.e., before using FS) and the proposed
HXGBLSTM (i.e., after using FS).

• We evaluated the efficiency of the proposed HXG-
BLSTM using the results of each classification
mode (binary or multiclass). The proposed HXG-
BLSTM for cyber threat detection outperforms
seven state-of-the-art deep learning algorithms for
binary classification and four for multiclass classi-
fication when performance is compared.

• Our proposed algorithm proved promising when

308

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Amin A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

we examined AUC, precision, recall, and the
confusion matrix generated by each classification
mode (CM) compared to other related algorithms.

The rest of this paper is organized as follows: the
related work of the most popular and current DL al-
gorithm applied to the CSE-CIC-IDS2018 dataset is
provided in Section 2. Section 3 provides a detailed
explanation of our proposed algorithm. Section 4 ex-
plains the experimental setup, parameter adjustment,
the obtained results, and a comparison with other al-
gorithms. Finally, the paper is concluded in Section 5,
where the future perspectives are presented.

2 Literature Review

Hnamte et al. [23] proposed a dependable intrusion
detection system using deep convolutional neural net-
work. The framework’s performance was assessed us-
ing significant factors like detection accuracy, false pos-
itive rate, and computational efficiency. ISCX-IDS
2012, DDoS (Kaggle), CICIDS2017, and CICIDS2018
are four publicly accessible IDS datasets that are used
to assess the proposed system. The system achieved a
detection accuracy range of 99.79% to 100%,

Alzughaibi et al. [6] proposed two Deep Neural
Network (DNN) models for the CSE-CIC -IDS2018
dataset: one based on a Multi-Layer Perceptron (MLP)
with BackPropagation (BP), the other on an MLP
with Particle Swarm Optimization (PSO). They ob-
tained results of 98.41% for multi-class classification
and 98.97% for binary classification.

Wang et al. [45] analyzed network anomaly de-
tection using the CSE-CIC -IDS2018 dataset in bi-
nary and multiclass classification. They tested several
DL algorithms including DNN, Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN),
LSTM, CNN RNN and CNN LSTM. The CNN RNN
and CNN LSTM models achieved a maximum multi-
class classification accuracy of 98.84% when compared
to the individual DNN, RNN, CNN, and LSTM algo-
rithms.

To analyze cyber threat data, the authors in [1] pre-
sented the Principal Component ANALYSIS (PCA)
with DNN Model, which is based on DNN and PCA.
By using DNN-PCA and only 12 features from the
dataset, they were able to reduce the training time by
half while maintaining the accuracy rate. 20% in test-
ing and 80% in training. From the confusion matrix in
the results, we can easily see the highest accuracy of
97.93%, along with a precision of 99.97% and a recall
of 97.42%.

An innovative deep learning algorithm for behavior-
based network intrusion detection was proposed by An-
tunes et al. [8] There are several hybrid algorithms are
used such as CNN-PCA, CNN-Autoencoder, LSTM-
PCA and LSTM-Autoencoder. The DDoS attack using
the LSTM-PCA classifier provides the highest accuracy
of 99.9%.

Al-Razib et al. [2] proposed a hybrid DNN-LSTM
framework that is SDN-enabled to detect cyberattacks
in smart environments. DNNLSTM, DNNGRU, and
BLSTM were the classifiers tested. The highest ac-
curacy, precision, recall, and F1 score for DNN LSTM
were 99.55%, 99.36%, 99.44% and 99.42%, respectively.

In the Internet of Vehicles, Ullah et al. [42] suggested
HDL-IDS: a hybrid deep learning architecture for in-
trusion detection. LSTM and GRU were combined
with a DENSE ReLU layer in the suggested model.
The outcomes revealed Precision of 0.9951, Recall of
0.996, F1-Score of 0.9952, and Accuracy of 0.9951.

Based on the CSE-CIC-IDS2018 dataset, Farhan et
al. [18] provided a Performance analysis of intrusion
detection using a deep learning algorithm. The LSTM
has three layers, each having 78, 64, and 8 neurons,
respectively. ReLu and Softmax are two of the acti-
vation methods that are used. The model could have
been detected with an accuracy 99%.

Black Widow Optimized Convolutional Long Short-
Term Memory (BWO-CONV-LSTM) Neural Networks
on a MapReduce based platform was utilised by Kanna
et al. [27]. The accuracy of the system for the CSE-
CIC-IDS2018 dataset was 98.25%.

To improve learning from imbalanced samples,
Zhang et al. [48] presented IoT intrusion detection
based on data augmentation. The authors used
ICVAE-BSM, which stands for Improved Conditional
Variational Autoencoder and Borderline Synthetic Mi-
nority Oversampling Technique. The system obtained
an accuracy of 98.67, an F1 score of 98.50, a recall of
98.95, and a precision of 98.04.

Kilincer et al. [28] proposed a thorough intrusion de-
tection framework using boosting algorithms. The ma-
chine learning algorithms with default parameters were
used to classify the newly created sub-datasets, while
the Extra Tree algorithm selected the most optimal
features for all datasets. The boosting algorithms in-
clude K-Nearest Neighbour (KNN), Näıve Bayes (NB),
Decision Trees (DT), Multilayer Perceptron (MLP),
Adaptive Boosting (AdaBoost), glioblastoma (GBM),
Light Gradient Boosted Machine (LGBM), and eX-
treme Gradient Boosting (XGBoost). The default set-
tings were employed with five fold cross validation and
achieved an accuracy of 99.94%.

For the CSE-CIC-IDS2018 dataset, Azeroual et al.
[11] provided a framework for implementing the DL al-
gorithm to Improve Intrusion Detection Systems (IDS).
Using CNN, the model accuracy on validation data de-
creased to 83.55% after 50 iterations, but it returned a
respectable accuracy of 92% after 30 iterations.

Assis et al. [10] presented a Gated Recurrent Unit
(GRU) deep-learning system to protect against attacks
in SDNs and achieved a 97% accuracy rate.

Deepdetect: Distributed Denial of Service (DDoS)
threat detection using Deep Learning was presented
by Asad et al. [9]. DNN (Deep Neural Network) with
feed-forward backpropagation was used in the proposed
model to evaluate the performance. 98% accuracy, an

309

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

F1 score of 0.99, and an AUC close to 1.
For effective detection of DDoS attacks in Software

Defined Networks (SDNs), Haider et al. [21] presented
a deep CNN ensemble system. Three 2-d convolutional
layers with 128, 64, and 32 filters, respectively, form
the ensemble CNN model, along with two maximum
poolings, one flattening layer, and two dense FC layers.
With Sigmoid as the output layer and ReLu as the
activation function in the hidden layers, the system
achieved 99.45% accuracy, 99.57% precision, 99.64%
recognition, and 99.61% F1 score.

Ferrag et al. [32] examined deep learning algorithms
for cybersecurity intrusion detection. Using CNN,
Deep Boltzmann Machines (DBM), RNN, Deep Be-
lief Networks (DBN), DNN, and Restricted Boltzmann
Machine (RBM), they were able to achieve an accuracy
of 97.28 to 97.37 percent.

Kim et al. [26] suggested a model of intrusion de-
tection based on convolutional neural networks. The
dataset was analyzed using vanilla RNN with 10 units
and CNN with two layers. When applied to the same
dataset, experimental results showed that the CNN
model outperformed the RNN model.

3 The Proposed HXGBLSTM Algorithm

In this section, the details of the proposed Hybrid
XG Boosted and Long Short-Term Memory (HXG-
BLSTM) algorithm is introduced. The main structure,
the preparation and preprocessing of the dataset, and
the assessment metrics are presented.

3.1 XGBoost Algorithm

Recursive feature elimination (RFE) is a sequential
backward selection algorithm that is part of the Wrap-
per family. It uses a unique underlying method to
pick features by recursively shrinking the feature set.
Guyon I initially set up RFE based on the Support
Vector Machine (SVM) model, which produced excel-
lent results during the gene selection process [47]. All
samples in the training set T is first included by the al-
gorithm. The cross-validation is then carried out in T .
The feature set size is then attempted to be decreased
by iteratively creating new feature subsets. The pre-
diction accuracy in each iteration is assessed using the
Mean Absolute Error (MAE) which is shown in Equa-
tion (1), and the set of characteristics with the lowest
average score based on MAE is chosen for the set of
characteristics chosen. The features associated with
the lowest feature importance are then removed after
each iteration of feature subset computation and sort-
ing of feature significance. The main structure of the
XGBoost is shortened in Algorithm 1.

MAE =
n∑

i=1

|yi − xi|
n

(1)

where yi is the prediction, xi is the true value and n
is number of samples.

Algorithm 1 XGBoost Algorithm.

Require: Training set T, which includes all samples
Ensure: Fold T into five folds using the cross-

validation method
1: Build a new feature subset
2: while Feature subset is not empty do
3: Evaluate the prediction accuracy based on the

Mean Absolute Error (MAE) as the objective func-
tion

4: Compute and order the IMportance IM(x) of
each feature x in the feature set using the Gain

5: Remove the feature with the lowest feature im-
portance in the sequence’s backward selection

All of the training samples from the training set
are initially loaded into the algorithm. The cross-
validation approach is then used to fold the training
set into five folds. A new feature subset is created
from these five folds in step 1. The loop begins iter-
ating through the new feature subset in step 2, taking
into account just the most significant features and dis-
regarding others, until it becomes empty. The accuracy
of the prediction is assessed in step 3 using the Mean
Absolute Error (MAE) as the objective function. The
importance of each feature x in the feature set is cal-
culated and arranged in step 4. The feature with the
lowest feature relevance in the sequence’s backward se-
lection is eliminated in step 5.

3.2 Long Short-Term Memory (LSTM)

Among the various DL algorithms, some of them, like
DNN and CNN, are better suited to non-sequential
data. They are capable of processing multimedia con-
tent. While being effective, they should not be used
to identify patterns in time series data. For this rea-
son, recurrent neural networks (RNNs) were developed.
They are applied to activities such as speech recogni-
tion, image-to-text conversion, and video event detec-
tion [36]. RNNs have short-term memories that are
based on repeating processes in hidden layers that re-
late to contextual data. Moreover, RNNs cannot func-
tion as long-term memory due to the problem with
gradient vanishing and explosion [49]. Hence, a Long
Short-Term Memory network (LSTM) for time-series
prediction is proposed by Hochreiter and Schmidhuber
in 1997 [24]. When memory cells are added to the hid-
den layer, the LSTM can govern how time-series data
is stored in memory. A set of programmable gates
(input, output, and forget gate) is used to transmit
data between the cells in the hidden layer [19]. The
vanishing gradient and explosion problem are avoided
because LSTM can preserve the cell state through its
gate mechanism, which can resolve both short-term
and long-term memory dependency issues [20].

The basic LSTM cell in a memory cell with three
gates—input gate, output gate, and forget gate—is de-
picted in Figure 1, which was previously explained in

310

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Amin A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

Figure 1: The block diagram of LSTM cell [20].

[20]. The input gate represented by the symbol IG is
in charge of monitoring the most recent data within a
memory cell. The input gate’s value at time instance t
is expressed in Equation (2).

IG(t) = sigmoid(WxiX(t) +WhiH(t− 1) +Bi) (2)

The output gate manages the distribution of the
most recent data to other networks. It is denoted by
the symbol OG and the output gate’s value at time
instance t is expressed in Equation (3).

OG(t) = sigmoid(WxoX(t) +WhoH(t− 1) +Bo)
(3)

The forget gate determines whether or not the data
should be erased based on the condition of the previous
cell. It is denoted by the symbol FG and the forget
gate’s value at time instance t is expressed in Equation
(4).

FG(t) = sigmoid(WxfX(t) +WhfH(t− 1) +Bf)
(4)

The hidden state is depending on the cell memory
state. It is denoted by the symbol H(t) and the hidden
state’s value at time instance t is expressed in Equation
(5).

H(t) = OG(t) tanh(M(t)) (5)

The cell memory state is denoted as M(t) and its
value at time instance t is expressed in Equation (6).

M(t) =FG(t) ∗M(t− 1) + IG(t)∗
(sigmoid(WxcX(t) +WhcH(t− 1) +Bc))

(6)

The sigmoid function is expressed in Equation (7).

sigmoid(x) =
1

1 + exp−x
(7)

where X denotes the input vector, the weight matri-
ces Wxf , Wxi, Wxc, and Wxo represent input weights,
while Whf , Whi, Whc, and Who represent recurrent
weights. Why matrix of output weights; with the cor-
responding bias vectors Bf , Bi, Bc, Bo, and By.

Algorithm 2 HXGBLSTM Algorithm.

1: Initialize parameters Batch size, Epoch, Input
shape(I0,d) and Load data instances from dataset

2: Apply data preprocessing
3: Apply XGBoost for feature selection
4: for Run = 1 to the number of runs (N) do
5: Define sequential model
6: for Epoch = 1 to the number of epochs (M)

do
7: Detect and classify attacks using a fully

connected Dense layer with neurons= 64
and activation = ‘Tanh’

8: Compile the model using
optimizer = ‘Adam’, loss function = ‘Mean
Squared Error’

9: Fit the model on the training set, validation
set = 0.2, and batch size

10: Evaluate and predict model for the testing
set

11: Obtain the overall best solution

3.3 The Structure of the Proposed HXGBLSTM

The block diagram of the proposed algorithm for im-
proving the identification of cyber security threats is
shown in Figure 2. One significant benefit is that it
makes use of both LSTM as a DL method and XG-
Boost as a feature selection algorithm. Preprocessing
the data, selecting the appropriate features, classifying
the data, training and validating the algorithm, and
lastly conducting testing and evaluation are the five
main phases of the suggested approach. The proposed
HXGBLSTM’s primary structure is shortened in Algo-
rithm 2.

The main steps of the proposed algorithm can be
summarized as follows:

• step 1, parameters are initialized according to the
values listed in Table 2.

• step 2, The files in the CSE-CIC-IDS-2018
dataset contain several data instances, which
makes processing the data samples stored there
and merging them to include each attack label
extremely time-consuming and computationally
challenging. Moreover, there is a high-class imbal-
ance in the CIC-IDS-2017 and CSE-CIC-IDS-2018
datasets, which could indicate the system’s poor
accuracy and high false positive rate. For this
reason, the data preprocessing phase is quite
important. It is in charge of eliminating null or
missing values, duplicate and inaccurate records,
and the issue of class imbalance. The process
of preparing the data for use in our proposed
algorithm was explained in the following lines:

– Elimination of NAN and infinite values: Any
null, missing, or duplicate values are found
and eliminated during this phase.

– Label encoding: In this phase, each of the
label’s data is separated. The data associ-
ated with each label is then converted into a

311

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Figure 2: HXGBLSTM Block Diagram.

numerical matrix representation using label
encoding. Target labels are additionally en-
coded with values ranging from zero to the
number of classes minus one.

– Data shuffling/re-sampling: The CIC-CSE
IDS 2018 dataset has an issue with class im-
balance. The distribution of classes is sig-
nificantly impacted by imbalanced datasets.
Because of its higher prior probability, classi-
fication models tend to overclassify the larger
class. Smaller class instances hence tend to
be misclassified more often than larger class
instances. This phase aims to address the
problem of class imbalance. This can only be
achieved by eliminating bias from the data
and creating equal distributions, which are
equal amounts of data from different attacks.
The learning process is improved by avoiding
biassed data and unbalanced samples. There-
fore, resampling is used to equalize the data
distribution across all categories and prevent
overfitting, which occurs when one class has
more samples than the others.

– Data normalization: This is the process of
rescaling data from its original range to a
new range ranging from zero to one where
all values fall. Additionally, the values of all
datasets have been scaled using the min-max
normalisation approach to fall between zero
and one. All values are divided by the great-
est value that is encountered, or all values
are divided by the range between the maxi-
mum and minimum values after the minimum
value is eliminated. Assuming that x repre-
sents the data value that requires normalisa-
tion, y represents the normalised value of x,
and that the lowest and highest values within
the real range are min and max. Equation 8
normalises the x value.

y =
x−min

max–min
(8)

• step 3, the proposed algorithm uses XGBoost for
feature selection. With the 22 essential features

indicated in Table 7, HXGBLSTM was retrained.
Searching for the Uncorrelated List of Variables
(SULOV) [43] serves as the foundation for XG-
Boost, and the features were selected. This al-
gorithm determines which variable pair is more
strongly related with the predefined correlation
threshold.

• From step 7 to step 10, it focuses on the cre-
ation of the X (predictor) and Y (target) variables.
In this paper, a deeper LSTM network is proposed
and consists of two input and output layers and
three hidden layers. First, it uses the feature input
layer to transfer an input layer to their represen-
tations. Afterward, the one-dimensional convolu-
tional layer receives the sequence feed. Once the
Tanh is used as an activation function, the out-
puts of the convolution layer are fed to max pool-
ing layers. A dropout rate of 0.1 is applied when
transferring the output to the LSTM layer. At
last, the fully connected layers acquire and aggre-
gate the data that was extracted from the LSTM
layer. The final output is passed through a linear
output layer for binary classification (0 for real, 1
for fraudulent), as well as multiclass classification.
Training and testing sets of data were created via
data splicing. While testing data is used to as-
sess the model’s performance on untested datasets,
training data is used to train the DL algorithm.
The data was split 80-20, which means that 80
percent was used for training and the remaining
20 percent was utilised for testing. Following that,
performance is assessed using the evaluation met-
rics outlined in Section 4.3.

4 Experiments and Discussions

In order to validate the experimental findings, fur-
ther tests with different parameters were run. Ad-
ditionally, a comparison is made between the re-
sults of the standard LSTM with all features and
the proposed HXGBLSTM algorithm with the se-
lected features. Additionally, a variety of binary
and multiclass classification modes were exam-

312

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Amin A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

ined. This Section presents the experimental se-
tups and findings. The description of the hardware
and software configuration is given in Section 4.1.
The CSE-CIC-IDS2018 Dataset, which is detailed
in Section 4.2, was utilised to test the proposed
HXGBLSTM. Performance is assessed using the
evaluation metrics outlined in Section 4.3. The
dataset was preprocessed and the parameters of
the proposed algorithm were adjusted as explained
in Section 4.4. In the initial setting of the stan-
dard LSTM, all 79 features from the dataset are
fed into the model. However, in the subsequent
tests, we employed XGBoost as a feature selection
technique to reduce the total number of features
and enhance the performance that was obtained.
The feature selection phase of HXGBLSTM is de-
scribed in Section 4.5. Both binary and multi-
class classifications were used to assess the pro-
posed HXGBLSTM algorithm. Section 4.6 dis-
cusses the efficiency of the proposed HXGBLSTM
for binary classification, whereas Section 4.7 dis-
cusses the efficiency of the proposed HXGBLSTM
for multi-class classification. Both Sections cover
comparisons with other similar studies, the con-
fusion matrix (CM) generated from the classifica-
tion, and a detailed description of the performance
obtained from each classification mode.

4.1 System Configuration

According to the resources for hardware and soft-
ware acceleration for deep learning computing [50],
a GPU working with NVIDIA CUDA (Compute
Unified Device Architecture) is used to reduce
computation times and possibly meet real-time
data processing needs. Using a Kaggle Platform
instance, we ran all of our studies on NVIDIA
P100 and NVIDIA T4(x2) GPUs. We used Keras
with a Tensorflow backend as our deep learning
framework. The NVIDIA P100 has the Pascal
architecture, 16GB of RAM, 9.5 TeraFLOP/s of
Single Precision FLOPs, and 732 GB/s of mem-
ory bandwidth. The NVIDIA T4, on the other
hand, has 16GB of memory, 8.1 TeraFLOP/s of
Single Precision FLOP/s, and 320 GB/s of mem-
ory bandwidth. For CPU tasks, the 16GB RAM
allocation is raised to 30GB per session there.

4.2 CSE-CIC-IDS2018 Dataset

The CSE-CIC-IDS2018 intrusion detection
dataset was created in 2018 by the Communica-
tions Security Establishment and the Canadian
Institute for Cybersecurity, both of which have
their headquarters in Fredericton, Canada [?].
The most recent intrusion dataset, acquired to
conduct real attacks, is the CSE-CIC-IDS2018 [3].
It is available to the public. CSE-CIC-IDS2018
has a larger capacity than CICIDS2017, with over

Table 1: Labels for CSE-CICIDS2018 Attacks.

Label attack name
1 FTP-BruteForce
2 SSH-Bruteforce
3 DDOS attack-HOIC
4 Bot
5 DoS attacks-GoldenEye
6 DoS attacks-Slowloris
7 DDOS attack-LOIC-UDP
8 Brute Force-Web
9 Brute Force-XSS
10 SQL Injection

400GB. The dataset includes both the attack
dataset’s required standards and a broad range
of attacks. It primarily comprises seven distinct
attack scenarios: distributed denial-of-service,
botnet, denial-of-service, brute force, heartbleed,
web attacks, and network infiltration [13]. A
dataset was created using the HTTP, HTTPS,
FTP, SSH, and email protocols to simulate the
online activities of 25 fake users. The sub-datasets
that make up CIC-2018 were collected over a
period of 10 different days, following the injection
of 16 distinct forms of attacks.

There are several attacks, including SSH-
BruteForce, FTP-BruteForce, Brute Force -XSS
attack, Brute Force -Web, SQL Injection, DoS
attacks using Hulk, SlowHTTPPTest, Slowloris,
DoS attacks using GoldenEye, DDOS attacks
using HOIC, DDOS attacks using LOIC-UDP,
DDOS attacks using LOIC-HTTP, and more. In
Table 1, the attacks are listed. To more accurately
represent the attacks, a network infrastructure
with machine diversity similar to real-world
networks was developed (five departments making
up the victim organisation, with fifty attacker
machines, four hundred victim machines, and
thirty servers) [3, 2]. The dataset includes 80
features that CICFlowMeter-V3 retrieved from
the traffic, together with forward and backward
collected system logs and network traffic for
each machine [33]. Ten files totaling 15, 450, 706
rows, each with 80 characteristics, make up the
CSE-CIC-IDS2018 dataset [26].

Table 2: Adjusted hyperparameters of the proposed
HXGBLSTM.

Paramter Value
Optimizer Adam

Learning rate 0.001
Hidden Nodes 64
Dropout rate 0.1
Batch size 32
Epochs 50

Activation function Tanh
Loss function Mean Squared Error

313

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

4.3 Evaluation Metrics

Commonly used performance metrics like accu-
racy, precision, recall, AUC value, and F1 are used
to evaluate classifiers based on our proposed al-
gorithm [30]. Furthermore, trials were conducted
extensively to distinguish between malicious and
legitimate records, so the confusion matrix (CM)
was used to compute the performance metrics in
our work [15, 8].

The proposed algorithm was assessed using the fol-
lowing metrics:

– Accuracy (Acc) is the percentage of all ex-
pected occurrences, whether normal or ab-
normal, that were correctly predicted to all
observations. This metric, which is com-
monly used to evaluate model performance,
is especially useful when the classes are not
balanced. Its value is calculated using the
Equation 9.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

– Precision is the number of accurately pre-
dicted positive observations relative to all ex-
pected positive observations. Low false posi-
tive rates are negatively correlated with accu-
racy. The greater precision levels correspond
to better results. Its value is calculated using
the Equation 10.

Precision =
TP

TP + FP
(10)

– Recall is the ratio of correctly predicted pos-
itive observations to all observations, and it
should be as high as possible. Its value is
calculated using the Equation 11.

Recall =
TP

TP + FN
(11)

– F1 score is produced by harmonically averag-
ing Precision and Recall. Its value is calcu-
lated using the Equation 12.

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(12)

– Area Under the Curve (AUC) indicates how
effectively a machine learning model matches
our expectations for identifying or classify-
ing various scenario types [35]. It indicates
the probability that a positive sample will
outnumber a negative sample when rating is
taken into consideration. Its value is calcu-
lated using the Equation 13.

AUC =
n

P.N
(13)

The components of the confusion matrix are shown
in Figure 3. The following acronyms can be used to
refer to the CM:

Figure 3: Confusion Matrix.

• TP: The model accurately categorises benign
events.

• TN: The model accurately identifies malicious at-
tempts.

• FP: In all observations, anomalies are incorrectly
expected to be normal occurrences. This number
should ideally have a low value.

• FN: Malicious attacks are incorrectly classified by
the model as benign occurrences. This number
should ideally have a low value.

4.4 Parameter Setting

Setting the different parameters was harder than it
seemed at first. At this point, we decide not to use any
algorithms for hyperparameter optimization. However,
when the outcomes weren’t satisfactory, we manually
made a random adjustment at first. Afterthat, We
proceed step-by-step to manual adjustment.

Using the default hyperparameter settings and with-
out making any parameter adjustments, the dataset
was split 80-20 into 80% and 20% training and test-
ing sections, respectively. For a fair evaluation, five
cross-validation splits are performed, and the mean is
computed. The obtained accuracy was 97.78 percent,
the loss was 0.01; the precision was 97.88; the recall was
97.65; and the AUC was 98.72 . However, in contrast
to other comparable research, that was low.

In this step, the hyperparameters of the proposed
algorithm were randomly adjusted in an attempt to
improve performance. For five cross-validation splits,
the suggested approach was evaluated using the same
performance metrics. The suggested algorithm’s de-
fault settings were randomly altered for thirty epochs
in each run to see if it affected the outcomes.

The first random adjustment was done when the hid-
den nodes were 256 and the filters were 64. This led
to an accuracy of 97.78%, F1 of 97.73, a precision of
97.88, recall of 97.65, and an AUC of 98.72. Next,
several random adjustments are implemented for the
proposed algorithm, including the following:

• While hidden nodes were extended to 128 and fil-
ters to 512, accuracy decreased from 97.78 to 97.
The results of HXGBLSTM are 97.5 percent AUC,
97.53% F1, 97.54% precision, and 96.48% recall.

• After changing the number of hidden layers and
reducing hidden nodes 128—a drop in accuracy
from 97.78 to 96.82 occurred. It achieves 96.7 F1,
96.7 precision, 96.79 recall, and 98.23 AUC.

• By halving the number of filters and hidden nodes,
the accuracy drops from 97.78 to 95. The precision

314

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Amin A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

Table 3: The results of the sequential adjustment of the dropout rate for the HXGBLSTM algorithm.

Adjusted Parameters Performance metrics

Dropout
Hidden
nodes

Activation
Function

Accuracy Loss F1 Precision Recall AUC

0.0 64 relu 94 0.01 97.82 97.88 97.83 98.81
0.1 64 relu 95 0.01 97.38 97.74 97.07 98.42
0.2 64 relu 93 0.01 96.78 97.32 96.47 98.1
0.3 64 relu 89 0.02 87.93 97.66 83.68 91.75
0.4 64 relu 88 0.02 89.98 95.06 87.6 93.49
0.5 64 relu 90 0.02 96.53 97.85 95.44 97.61
0.6 64 relu 86 0.03 86.55 98.54 81.45 90.66
0.7 64 relu 85 0.04 92.07 96.88 89.62 94.65
0.8 64 relu 78 0.04 85.9 99.35 79.12 89.53
0.9 64 relu 60 0.06 27.33 36.36 27.3 63.65

is 97.15, the recall is 96.11, and the AUC is 97.91.
The F1 is 96.53.

After the random adjustment produced unsatisfac-
tory results, this step switched to sequential man-
ual adjustment to see if altering the hyperparameters
had an impact on the HXGBLSTM algorithm’s per-
formance. The accuracy of the system is influenced
by various parameters, such as the activation function,
number of hidden nodes, and dropout rate. We pro-
ceed with modifying each of these elements separately.
The most appropriate parameters for evaluating the
HXGBLSTM were identified after several runs, and the
outcomes were contrasted with those of the earlier ex-
periments.

The results of several in-depth tests conducted with
various hyperparameters for the IZOA algorithm are
shown in Tables 3, 4, and 5 in where the overall best
values are reported in bold text.

4.4.1 The Adjustment of the Dropout Rate

As seen in Table 3, the HXGBLSTM algorithm’s
dropout rate is updated progressively from 0.1 to 0.9.
In each trial, the dropout rate is increasing by 0.1 and
using fixed values for hidden nodes of 64 and the relu
as an activation function. Bold text reports the over-
all best values. It has been observed that accuracy
increases from 60% to 95% when the dropout rate is
decreased from 0.9 to 0.1. The results clearly show
that the ideal value for the dropout is 0.1, yielding the
maximum accuracy of 95%.

4.4.2 The Adjustment of the Hidden Nodes

The number of hidden nodes for the HXGBLSTM al-
gorithm is adjusted consecutively from 8 to 128 while
maintaining stable values for a dropout rate of 0.1, as
it was the ideal value. To perform this update, each
trial’s hidden node count is doubled. The relu served as
an activation function throughout these upgrades. The
performance changes while updating the hidden nodes
are shown in Table 3. Reducing the number of hidden
nodes from 8 to 64 has been found to increase accuracy

from 61.69% to 97.74%. Thus, 64 is the best value for
the hidden nodes, and when the other parameters are
fixed, this gives the highest accuracy of 95%.

4.4.3 The Adjustment of the Activation Func-
tion

Every trial, the activation function for the HXG-
BLSTM method is updated using a combination of
tanh, sigmoid, softmax, linear, and relu. The dropout
rate of 0.1 and the number of hidden nodes of 64 were
fixed because these were the best values, as indicated in
Tables 3 and 4, respectively. Based on the best results
obtained, Table 5 displays the performance progress in
order during updates. It is observed that increasing
the accuracy from 93.92% to 98.23% occurs when the
activation function is changed from relu to tanh. The
data shown clearly shows that, while other parameters
are fixed, tanh is the optimal choice for the activation
function, yielding the highest accuracy of 98.23%.

Table 2 displays the optimised adjusted hyperparam-
eters for the HXGBLSTM algorithm. Using the Adam
optimizer, the trainable parameter was changed at a
learning rate of 0.001. Furthermore, it’s clear that
performance changes gradually as one advances from
using the default hyperparameters, which produce an
accuracy of 90%, to adjusting the hidden nodes to 64,
which produces an accuracy of 96.74%, to enhancing
the dropout rate to 0.1, which produces an accuracy
of 95.23%, and lastly choosing tanh as an activation
function, which produces an accuracy of 98.23%.

4.4.4 The Adjustment of the Epochs

After selecting the best settings, the next trial was ad-
vanced by increasing the number of epochs in each it-
eration. The epoch count increased from 30 to 50, and
the number of runs increased from 5 to 20. The top
performing results overall are shown in Table 6. This
table shows the improvement in the binary classifica-
tion performance for HXGBLSTM based on Accuracy,
Loss, F1, Precision, Recall, and AUC throughout sev-
eral runs and epochs. Performance is enhanced by in-
creasing the number of runs and epochs. When the

315

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Table 4: The results of the sequential adjustment of the hidden nodes for the HXGBLSTM algorithm.

Adjusted Parameters Performance metrics

Dropout
Hidden
nodes

Activation
Function

Accuracy Loss F1 Precision Recall AUC

0.1 8 relu 61.69 0.05 41.41 62.94 37.53 68.74
0.1 16 relu 77.59 0.03 69.32 86.11 61.05 80.41
0.1 32 relu 90.93 0.02 94.35 95.3 93.98 96.74
0.1 64 relu 97.74 0.01 96.04 97.02 95.36 97.53
0.1 128 relu 96.55 0.01 97.61 97.74 97.54 98.66

Table 5: The results of the adjustment of the activation function for the HXGBLSTM algorithm ranked by
the best performance.

Adjusted Parameters Performance metrics

Dropout
Hidden
nodes

Activation
Function

Accuracy Loss F1 Precision Recall AUC

0.1 64 tanh 98.23 0 0.994711 0.994847 0.994643 0.997061
0.1 64 sigmoid 97.85 0 0.994694 0.99507 0.994383 0.996942
0.1 64 softmax 97.15 0.01 0.984358 0.986511 0.982971 0.990785
0.1 64 linear 95.62 0.01 0.979264 0.990119 0.969471 0.984243
0.1 64 relu 93.92 0.01 0.958432 0.964293 0.955074 0.975615

Table 6: The efficiency of accuracy through a different number of epochs of the proposed algorithm based on
binary classification.

Epochs # Runs Acuracy Loss F1 Precision Recall AUC
20 5 97.78 0.01 97.73 97.88 97.65 98.72

30
5 98.65 0 98 98.6 97.6 98.7

10 98.95 0 99.4 99.4 99.4 99.7
50 20 98.98 0 99.2 99.4 99.2 99.5

number of epochs and runs is increased, the accuracy
averages out at 98.98 instead of 98.23 as obtained after
adjusting parameters.

Prior to FS, the HXGBLSTM was assessed and
yielded the following results: 97.78% accuracy, 97.73
F1, 97.88 precision, 97.65 recall, and 98.72 AUC. How-
ever, the accuracy increased to 98.65%, the precision to
98.6, the recall to 97.6, the AUC to 98.7, and there was
no loss. This is achieved by using five different runs,
thirty epochs, and the adjusted hyperparameters.

After adjusting the hyperparameters to 30 epochs
and 10 distinct runs, the accuracy reached 98.95%, the
F1 was 99.4, the precision was 99.4, the recall was 99.4,
the AUC was 99.7, and there was no loss. The results
demonstrated 98.98% accuracy, 99.2 F1, 99.4 precision,
99.2 recall, 99.5 AUC, and zero loss using 50 epochs and
20 separate runs.

4.5 Feature Selection in HXGBLSTM

We concluded that the optimum performance would
come from not utilising all of the features in the dataset
because some of them were redundant and unnecessary.
This provides a motivation to investigate whether using
the optimal features has an impact on performance. In
order to improve the result and decrease the amount of
features, we thus used the feature selection algorithm.

The stronger features were successfully chosen us-

Table 7: Overview of the 22 selected features based
on XGBoost feature selection algorithm.

Bwd Pkt Len Mean Fwd Header Len Bwd IAT Mean Dst Port Fwd PSH Flags
Init Fwd Win Byts Init Bwd Win Byts Fwd Seg Size Min Subflow Bwd Pkts Flow IAT Mean

Flow Pkts/s Flow Byts/s Flow IAT Std URG Flag Cnt Bwd Header Len
Fwd Pkt Len Max SYN Flag Cnt Flow Duration PSH Flag Cnt RST Flag Cnt
Tot Fwd Pkts Protocol

ing the XGBoost FS algorithm, which eliminated the
weaker ones. A thorough explanation of the main algo-
rithm used by XGBoost may be found in Section 3.1.
Just 22 out of the 79 features in the original dataset
were selected using the XGBoost FS algorithm. Using
the 22 important features given in Table 7, the pro-
posed HXGBLSTM algorithm was further improved.

The algorithm’s goal during the FS process is to
maximise memory usage with a 0.7 correlation limit.
The memory utilisation is reduced by 62.3 percent.
The feature selection process went through multiple it-
erations. Each time around, a few of the less important
features were removed.

In total, there are 79 features. In the initial itera-
tion, ten ID or low-information features are removed.
It then retains unnecessary variables out of the next
processing, leaving 68 features. The next step involves
searching for uncorrelated lists of variables (SULOV)
using the 68 features. Next, the variables that show
high correlation are eliminated.

Using SULOV, 35 characteristics were ultimately

316

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Amin A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

Figure 4: The cyclical development of the
HXGBLSTM FS algorithm.

chosen. Every iteration of the XGBoost FS technique
chooses the top 10 features from the range of selected
feature in a recursive manner. The XGBoost FS com-
pleted in 24 seconds, however the total FS took 186
seconds to complete. Finally, the result included a list
of 22 significant features. The HXGBLSTM FS algo-
rithm’s cyclical development is shown in Figure 4.

Table 8: Efficiency of the proposed HXGBLSTM for
binary Classification.

Feature Selec-
tion Algorithm

Accuracy Loss F1 Precision Recall AUC

STD LSTM 93.31 5.9 93.6 93.72 93.61 93.61
ZOA 97.34 2.3 97.47 97.54 97.47 97.47
BOA 99.3 1 99.33 99.33 99.33 99.33
PSO 99.31 1 99.37 99.38 99.37 99.37
GA 99.37 1 98.73 98.73 98.73 98.73
MBOA 99.4 1 99.48 99.48 99.49 99.49
FOA 99.55 0.3 99.7 99.71 99.7 99.7
HXGBLSTM 99.8 0 99.83 99.85 99.82 99.9

4.6 Efficiency of The Proposed HXGBLSTM for
Binary Classification

The purpose of this experiment is to assess the
proposed HXGBLSTM’s binary classification per-
formance. Network traffic is classified as normal or
abnormal by the binary classification(0 for normal, 1
for fraudulent). This was done using the optimised
adjusted hyperparameters for the HXGBLSTM,
which are listed in Table 2. The preprocessed
CSE-CICIDS2018 dataset was used for this.

4.6.1 Performance of The Binary Classifica-
tion of The Standard LSTM and The
Proposed HXGBLSTM

The performance of the proposed HXGBLSTM is com-
pared to that of the standard LSTM. The efficiency of
the proposed HXGBLSTM for binary classification in
comparison to the standard LSTM is shown in Table
8. The best results in this table are indicated in bold
text. This table shows a comparative analysis between
the computational performance of six established evo-
lutionary computation algorithms and the recently de-
veloped bio-inspired metaheuristic algorithm called Ze-
bra Optimisation Algorithm (ZOA). These algorithms
include the Particle Swarm Optimisation Algorithm
(PSO), the Bio-inspired Algorithms (Bat Optimisa-
tion Algorithm (BOA), Firefly Optimisation Algorithm
(FOA), and Monarch Butterfly Optimisation Algo-
rithm (MBOA), as well as the Genetic Algorithm (GA)
as an Evolutionary Algorithm. When the features for
binary classification were selected, the outcomes were
compared to the proposed algorithm. The wrapper-
based feature selection XGBoost algorithm has been
demonstrated to perform better than the other FS al-
gorithms. The CSE-CICIDS2018 dataset was utilised
to obtain these results, which are the average of twenty
runs, each with fifty epochs. This table demonstrates
how effectively the proposed HXGBLSTM algorithm
employed, with an accuracy of 99.80%, loss close to
zero, an F1 score of 99.83, a precision of 99.85, a recall
of up to 99.82, and an AUC of 99.9. Figures 7a 7b, 8a,
and 8b displayed the confusion matrix and ROC for a
more detailed look at the results of the experiment.

317

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Figure 5: Performance of binary classification for the
standard LSTM and HXGBLSTM.

Figure 6: Performance of the standard LSTM based
on binary classification.

4.6.2 HXGBLSTM Vs. Other Algorithms

To accurately evaluate the effectiveness of HXG-
BLSTM, we conducted in-depth comparison with the
most recent DL algorithms that were employed in the
cyber threat detection literature. In this comparison,
we used deep learning algorithms from earlier studies
such as [11], [28], [10], [32], [1], [9], BWO-CONV-
LSTM [27], [48], [45], [6], [18], [21], [42], and [1]. The
results of the comparison for deep learning approaches
are shown in Table 9. Bold text in Table 9 represents
the overall best solution. The proposed HXGBLSTM’s
achieves an accuracy of 99.80, F1 of 99.83, the preci-
sion of 99.85, recall of 99.82, loss of zero, and AUC of
99.9. These results show that, in terms of the overall
performance of the binary classification, our proposed
algorithm performed better than other algorithms.

4.7 Efficiency of the Proposed HXGBLSTM for
Multi-Class Classification

This experiment aims to multiclassify network traffic
into 10 types of attacks (as listed in Table 1) and
the benign class in order to assess the efficiency of

Table 9: Comparison with Related Literature Based
on Binary Classification.

Ref. Accuracy F1 Precision Recall
[1] 97.93 98.68 99.97 97.42
[48] 98.67 98.5 98.04 98.95
[45] 98.85 98.83 98.85 98.85
[6] 98.97 99.38 99.98 98.8
[21] 99.45 99.61 99.57 99.64
[42] 99.51 99.52 99.51 99.6
[2] 99.55 99.42 99.36 99.44

HXGBLSTM 99.8 99.83 99.85 99.82

the proposed HXGBLSTM for cyber threat detection.
The HXGBLSTM’s optimised adjusted hyperparame-
ters, which are given in Table 2, were used for this.
HXGBLSTM’s performance is evaluated by comparing
it with the most recent research and utilising the CSE-
CICIDS2018 dataset.

4.7.1 Performance of the Multi-Class Classifi-
cation of The Standard LSTM and The
Proposed HXGBLSTM

The purpose of this experiment is to use the CSE-
CICIDS2018 to investigate how well HXGBLSTM per-
forms in correctly identifying ten different types of
attacks. For each attack type, the accuracy, loss,
F1 score, precision, recall, AUC, and CM were as-
sessed. Additionally, a comparison was made between
the outcomes of HXGBLSTM and the standard LSTM
To guarantee an equitable comparison, the two algo-
rithms— HXGBLSTM and the standard LSTM—were
implemented and run in the same setting. The ef-
ficiency of the proposed HXGBLSTM for multiclass
classification in comparison to the standard LSTM is
shown in Table 10. Furthermore, Figures 7, and 8 dis-
play the confusion matrix based on multiclass classi-
fication for the standard LSTM and HXGBLSTM re-
spectively.

It is evident from these outcomes that HXGBLSTM
outperformed other related algorithms across the board
for every evaluation criteria. This is because the sug-
gested HXGBLSTM algorithm incorporates both XGB
and LSTM.

With the standard LSTM, the accuracy for the FTP-
BruteForce attack was 99.12, the loss was zero, the F1
score reached 99.5, the precision scored 99.52, the re-
call achieved 99.49, and the AUC attained 99.72. For
the SSH-Bruteforce attack, the accuracy was 99.77, the
loss was zero, the F1 score reached 99.8, the precision
scored 99.8, the recall achieved 99.8, and the AUC at-
tained 99.8. According to DDOS attack-HOIC attack,
the accuracy was 99.89, the loss was zero, and the F1
score, precision, recall, and the auc attained 99.95.

For the Bot attack, the accuracy was 99.58, and the
loss raised to 0.33, while the F1 score, precision, re-
call, and AUC were fixed at 99.56. Regarding the DoS
attacks-GoldenEye attack, accuracy reached 99.87, the
loss still zero, while the F1 score, precision, recall, and
the AUC were fixed near 100. For the DoS-Slowloris

318

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Amin A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

attack, the accuracy was 99.89, and the loss was zero,
while the F1 score, precision, recall, and AUC were
fixed at 99.93. On the other side, the DDOS-LOIC-
UDP attack achieved an accuracy of 99.9, the loss
was zero, while the F1 score, precision, recall, and
AUC were fixed at 99.97. The Brute Force-Web at-
tack achieved an accuracy of 99.5, a loss of 0.33, and
fixed values of 99.54 for both the F1 score and preci-
sion, while recall and AUC were 99.55. The accuracy
of the Brute Force-XSS attack was 99.91, the loss was
zero, and the F1 score was 99.87, while precision, re-
call, and AUC were all fixed at 99.88. Last but not
least, the SQL Injection attack achieved an accuracy
of 99.89, a loss of zero, while the F1 score, precision,
recall, and AUC were fixed at 99.99.
As described in Section 4.5, only 22 of the most

important features were selected. After applying FS
with the proposed HXGBLSTM, the accuracy for the
FTP-BruteForce attack raised to 100, the loss was zero.
According to the SSH-Bruteforce attack, the accuracy
reached 99.97, while the F1 score, precision, recall, and
AUC attained 99.99. Referring to DDOS attack-HOIC
attack, the accuracy was 99.85, the loss was zero, and
the F1 score, precision, recall, and the auc attained
99.99. For the Bot attack, the accuracy was 99.7,
the loss was zero, and the F1 score, precision, recall,
and AUC were fixed at 99.81. Regarding the DoS-
GoldenEye attack, the results were unexpected because
accuracy decreased to 97.42, the loss increased to 2.33,
the F1 score was 97.5, precision attained 97.63, and
recall and AUC were all set to 97.49. For the DoS-
Slowloris attack, the accuracy was 99.83, and the loss
was zero, while the F1 score, precision, recall, and AUC
were fixed at 99.82. On the other hand, the F1 score,
precision, recall, and accuracy of the DDOS-LOIC-
UDP attack were all fixed at 100. The loss was also
zero. The Brute Force-Web attack achieved an accu-
racy of 99.89, a loss of zero, while the F1 score, pre-
cision, recall, and the AUC were fixed at 99.94. The
accuracy of the Brute Force-XSS attack was 99.96, the
loss was zero, and the F1 score, precision, recall, and
AUC were all fixed at 99.97. Last but not least, the
SQL Injection attack achieved an accuracy of 99.99, a
loss of zero, while the F1 score, precision, recall, and
AUC were fixed at 100.

4.7.2 HXGBLSTM Vs. Other Algorithms

Similar to binary classification, we conducted in-depth
comparison with the most recent DL algorithms that
were employed in the cyber threat detection literature.
In this comparison, we used deep learning algorithms
from earlier studies such as [26], [8], BWO-CONV-
LSTM [27], and [6]. The results of the comparison for
deep learning approaches are shown in Table 11. Bold
text in the table represents the overall best solution.
For the FTP-BruteForce attack, HXGBLSTM

achieved an accuracy of 100 higher in multi-class
classification than that reported in the other liter-
ature. Regarding the SSH-Bruteforce attack, our

accuracy was 99.97 higher, respectively, than the
other algorithms of [26], [8], BWO-CONV-LSTM
[27], and [6]. For DDoS-HOIC and Bot attacks, Our
accuracy was 99.89 and 99.7 respectively, greater
than that of BWO-CONV-LSTM [27]. According
to the DoS-GoldenEye attack, Our accuracy was
99.87 greater than the other algorithms. Regarding
the DoS-Slowloris attack, Our accuracy was 99.91
higher than the other algorithms. For DDoS-HOIC
and Bot attacks, Our accuracy was 99.89 and 99.7
respectively, greater than that of BWO-CONV-LSTM
[27]. According to Brute Force -Web, Brute Force
-XSS, and SQL Injection attacks, our accuracy reaches
99.89, 99.96, and 99.99 respectively which were the
best results among other algorithms.

5 Conclusion and Future Work

Cyber threat detection systems have been used to de-
tect malicious and abnormal network behavior. Differ-
ent kinds of these systems have been adopted to safe-
guard the network using a variety of DL algorithms.
Optimizing system performance is the main objective
of providing such consistent and effective systems. This
paper proposes the HXGBLSTM algorithm to address
this problem. All of the features were utilized, and fea-
ture selection algorithms were then used. To avoid se-
lecting features that are redundant or unneeded, HXG-
BLSTM uses XGBoost as a feature selection algorithm.
Feature selection procedures were utilized to locate
the optimal features for efficient results with the least
amount of complexity and processing time. The most
recent CSE-CICIDS2018 dataset is used to analyze the
algorithm resistance utilizing the binary or multiclass
classification modes. When performance is compared,
the results show that HXGBLSTM for cyber threat de-
tection outperforms seven cutting-edge deep learning
algorithms for binary classification and four for mul-
ticlass classification. In comparison to the standard
LSTM, HXGBLSTM performed better. This may be
because the HXGBLSTM algorithm deals with more
precise features without wasting time on less signifi-
cant features. In the future, it is advised to evaluate
the outcomes of different feature selection algorithms
and optimize features utilizing swarm intelligence algo-
rithms. This method’s applicability will be improved
by testing it on various datasets with newly developed
attacks.

6 Data Availability

Datasets related to this manuscript can be
found at https://registry.opendata.aws/

cse-cic-ids2018/, an open-source online data
repository hosted at Canadian Institute for Cyberse-
curity [13].

319

https://registry.opendata.aws/cse-cic-ids2018/
https://registry.opendata.aws/cse-cic-ids2018/

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

(a) CM for multi-class classification before FS. (b) ROC for multi-class classification before FS.

Figure 7: CM of the Standard LSTM based on multi-class classification.

Table 10: Efficiency of the proposed HXGBLSTM based on multi-class Classification.

Attack
HXGBLSTM(After FS) Standard LSTM (Before FS)

Accuracy Loss F1 Precision Recall AUC Accuracy Loss F1 Precision Recall AUC
FTP-BruteForce 100 0 100 100 100 100 99.12 0 99.5 99.52 99.49 99.72
SSH-Bruteforce 99.97 0 99.99 99.99 99.99 99.99 99.77 0 99.8 99.8 99.8 99.8

DDOS attack-HOIC 99.85 0 99.9 99.9 99.9 99.9 99.89 0 99.95 99.95 99.95 99.95
Bot 99.7 0 99.81 99.81 99.81 99.81 99.58 0.33 99.56 99.56 99.56 99.56

DoS attacks-GoldenEye 97.42 2.33 97.5 97.63 97.49 97.49 99.87 0 100 100 100 100
DoS attacks-Slowloris 99.91 0 99.95 99.95 99.95 99.95 99.89 0 99.93 99.93 99.93 99.93

DDOS attack-LOIC-UDP 100 0 100 100 100 100 99.9 0 99.97 99.97 99.97 99.97
Brute Force -Web 99.89 0 99.94 99.94 99.94 99.94 99.5 0.33 99.54 99.54 99.55 99.55
Brute Force -XSS 99.96 0 99.97 99.97 99.97 99.97 99.91 0 99.87 99.88 99.88 99.88
SQL Injection 99.99 0 100 100 100 100 99.89 0 99.99 99.99 99.99 99.99

(a) CM of HXGBLSTM based on multi-class classification.
(b) AUC-ROC of HXGBLSTM based on multi-class

classification.

Figure 8: Performance of HXGBLSTM based on multi-class classification.

320

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

Amin A Hybrid Extreme Gradient Boosting and Long Short-Term Memory Algorithm for Cyber Threats Detection

Table 11: Comparison with related literature based
on accuracy for multi-class classification.
Attack Proposed HXGBLSTM [26] [8] [27] [6]

FTP-BruteForce1 100 98 76.1 96.88 84
SSH-Bruteforce2 99.97 96 76.1 96.88 84

DDOS attack-HOIC3 99.89 100 100 94.67 100
Bot4 99.7 - 99.94 99.45 100

DoS attacks-GoldenEye5 99.87 47 99.79 99.55 96
DoS attacks-Slowloris6 99.91 66 99.79 99.55 96

DDOS attack-LOIC-UDP7 100 100 100 94.67 100
Brute Force -Web8 99.89 30 76.1 96.88 95
Brute Force -XSS9 99.96 65 76.1 96.88 95
SQL Injection10 99.99 8 0 98.35 95

References

[1] Al-Fawa’reh, M., Al-Fayoumi, M., Nash-
wan, S., and Fraihat, S. Cyber threat intel-
ligence using pca-dnn model to detect abnormal
network behavior. Egyptian Informatics Journal
23, 2 (2022), 173–185.

[2] Al Razib, M., Javeed, D., Khan, M. T.,
Alkanhel, R., and Muthanna, M. S. A. Cy-
ber threats detection in smart environments using
sdn-enabled dnn-lstm hybrid framework. IEEE
Access 10 (2022), 53015–53026.

[3] Alahmed, S., Alasad, Q., Hammood, M. M.,
Yuan, J.-S., and Alawad, M. Mitigation of
black-box attacks on intrusion detection systems-
based ml. Computers 11, 7 (2022), 115.

[4] Ali, A. F., and Hassanien, A.-E. A survey
of metaheuristics methods for bioinformatics ap-
plications. In Applications of Intelligent Optimiza-
tion in Biology and Medicine: Current Trends and
Open Problems. Springer, 2015, pp. 23–46.

[5] Alohali, M. A., Al-Wesabi, F. N., Hilal,
A. M., Goel, S., Gupta, D., and Khanna,
A. Artificial intelligence enabled intrusion detec-
tion systems for cognitive cyber-physical systems
in industry 4.0 environment. Cognitive Neurody-
namics (2022), 1–13.

[6] Alzughaibi, S., and El Khediri, S. A cloud
intrusion detection systems based on dnn using
backpropagation and pso on the cse-cic-ids2018
dataset. Applied Sciences 13, 4 (2023), 2276.

[7] Ankit, T., and Ritika, L. A review of the
advancement in intrusion detection datasets. Pro-
cedia Computer Science 167 (2020), 636–645.

[8] Antunes, M., Oliveira, L., Seguro, A.,
Veŕıssimo, J., Salgado, R., and Murteira,
T. Benchmarking deep learning methods for
behaviour-based network intrusion detection. In
Informatics (2022), vol. 9, p. 29.

[9] Asad, M., Asim, M., Javed, T., Beg, M. O.,
Mujtaba, H., and Abbas, S. Deepdetect: de-
tection of distributed denial of service attacks us-
ing deep learning. The Computer Journal 63, 7
(2020), 983–994.

[10] Assis, M. V., Carvalho, L. F., Lloret, J.,
and Proença Jr, M. L. A gru deep learning
system against attacks in software defined net-
works. Journal of Network and Computer Appli-
cations 177 (2021), 102942.

[11] Azeroual, H., Belghiti, I. D., and
Berbiche, N. A framework for implementing an
ml or dl model to improve intrusion detection sys-
tems (ids) in the ntma context, with an example
on the dataset (cse-cic-ids2018). In ITM Web of
Conferences (2022), vol. 46, p. 02005.

[12] Bacanin, N., Venkatachalam, K., Bezdan,
T., Zivkovic, M., and Abouhawwash, M. A
novel firefly algorithm approach for efficient fea-
ture selection with covid-19 dataset. Microproces-
sors and Microsystems 98 (2023), 104778.

[13] Canadian Institute for Cybersecurity.
A realistic cyber defense dataset (cse-cic-
ids2018). https://registry.opendata.aws/

cse-cic-ids2018/, June 2023.

[14] Carrio, A., Sampedro, C., Rodriguez-
Ramos, A., and Campoy, P. A review of deep
learning methods and applications for unmanned
aerial vehicles. Journal of Sensors 2017 (2017).

[15] Chouhan, R. K., Atulkar, M., and Nag-
wani, N. K. A framework to detect ddos attack
in ryu controller based software defined networks
using feature extraction and classification. Applied
Intelligence (2022), 1–21.

[16] Darwish, A., Hassanien, A. E., and Das, S.
A survey of swarm and evolutionary computing
approaches for deep learning. Artificial intelli-
gence review 53, 3 (2020), 1767–1812.

[17] Eskandari, S., and Seifaddini, M. Online and
offline streaming feature selection methods with
bat algorithm for redundancy analysis. Pattern
Recognition 133 (2023), 109007.

[18] Farhan, B. I., and Jasim, A. D. Performance
analysis of intrusion detection for deep learning
model based on cse-cic-ids2018 dataset. Indone-
sian Journal of Electrical Engineering and Com-
puter Science 26, 2 (2022), 1165–1172.

[19] Gers, F. A., Schmidhuber, J., and Cummins,
F. Learning to forget: Continual prediction with
lstm. Neural computation 12, 10 (2000), 2451–
2471.

[20] Ghimire, S., Deo, R. C., Wang, H., Al-
Musaylh, M. S., Casillas-Pérez, D., and
Salcedo-Sanz, S. Stacked lstm sequence-to-
sequence autoencoder with feature selection for
daily solar radiation prediction: a review and new
modeling results. Energies 15, 3 (2022), 1061.

[21] Haider, S., Akhunzada, A., Mustafa, I., Pa-
tel, T. B., Fernandez, A., Choo, K.-K. R.,
and Iqbal, J. A deep cnn ensemble frame-
work for efficient ddos attack detection in software
defined networks. Ieee Access 8 (2020), 53972–
53983.

[22] Hind, B., and Barbora, B. Recent advances
in machine-learning driven intrusion detection in
transportation: Survey. Procedia Computer Sci-
ence 184 (2021), 877–886.

[23] Hnamte, V., and Hussain, J. Dependable in-
trusion detection system using deep convolutional

321

https://registry.opendata.aws/cse-cic-ids2018/
https://registry.opendata.aws/cse-cic-ids2018/

MENDEL — Soft Computing Journal, Volume 29, No. , 2023, Brno, Czech RepublicX

neural network: A novel framework and perfor-
mance evaluation approach. Telematics and In-
formatics Reports 11 (2023), 100077.

[24] Hochreiter, S., and Schmidhuber, J. Long
short-term memory. Neural computation 9, 8
(1997), 1735–1780.

[25] Javeed, D., Gao, T., Khan, M. T., and
Shoukat, D. A hybrid intelligent framework to
combat sophisticated threats in secure industries.
Sensors 22, 4 (2022), 1582.

[26] Jiyeon, K., Yulim, S., and Eunjung, C. An
intrusion detection model based on a convolu-
tional neural network. Journal of Multimedia In-
formation System 6, 4 (2019), 165–172.

[27] Kanna, P. R., and Santhi, P. Hybrid intru-
sion detection using mapreduce based black widow
optimized convolutional long short-term memory
neural networks. Expert Systems with Applications
194 (2022), 116545.

[28] Kilincer, I. F., Ertam, F., and Sengur, A. A
comprehensive intrusion detection framework us-
ing boosting algorithms. Computers and Electrical
Engineering 100 (2022), 107869.

[29] Malik, J., Akhunzada, A., Bibi, I., Imran,
M., Musaddiq, A., and Kim, S. W. Hybrid
deep learning: An efficient reconnaissance and
surveillance detection mechanism in sdn. IEEE
Access 8 (2020), 134695–134706.

[30] Mijwil, M., Salem, I. E., and Ismaeel, M. M.
The significance of machine learning and deep
learning techniques in cybersecurity: A compre-
hensive review. Iraqi Journal For Computer Sci-
ence and Mathematics 4, 1 (2023), 87–101.

[31] Mishra, S., Sagban, R., Yakoob, A., and
Gandhi, N. Swarm intelligence in anomaly de-
tection systems: an overview. International Jour-
nal of Computers and Applications 43, 2 (2021),
109–118.

[32] Mohamed, A. F., Leandros, M., Sotiris, M.,
and Helge, J. Deep learning for cyber security
intrusion detection: Approaches, datasets, and
comparative study. Journal of Information Se-
curity and Applications 50 (2020), 102419.

[33] Mossa, G., Ghaleb, G., Faisal, A., Reem,
A., and Suad, O. A detailed analysis of bench-
mark datasets for network intrusion detection sys-
tem. Asian Journal of Research in Computer Sci-
ence 7, 4 (2021), 14–33.

[34] Ragab, M. Hybrid firefly particle swarm opti-
misation algorithm for feature selection problems.
Expert Systems (2023).

[35] Ren, X., Yang, W., Jiang, X., Jin, G., and
Yu, Y. A deep learning framework for multimodal
course recommendation based on lstm+ attention.
Sustainability 14, 5 (2022), 2907.

[36] Samek, W., Montavon, G., Lapuschkin, S.,
Anders, C. J., and Müller, K.-R. Explain-
ing deep neural networks and beyond: A review
of methods and applications. Proceedings of the
IEEE 109, 3 (2021), 247–278.

[37] Sohail, A. Genetic algorithms in the fields of
artificial intelligence and data sciences. Annals of
Data Science 10, 4 (2023), 1007–1018.

[38] Thakkar, A., and Lohiya, R. Role of swarm
and evolutionary algorithms for intrusion detec-
tion system: A survey. Swarm and evolutionary
computation 53 (2020), 100631.

[39] Thuy, T. T. T., Thuan, L. D., Duc, N. H.,
and Minh, H. T. A study on heuristic algo-
rithms combined with lr on a dnn-based ids model
to detect iot attacks. In MENDEL (2023), vol. 29,
pp. 62–70.

[40] Tiwari, A. A hybrid feature selection method
using an improved binary butterfly optimization
algorithm and adaptive β–hill climbing. IEEE Ac-
cess (2023).

[41] Trojovská, E., Dehghani, M., and Tro-
jovskỳ, P. Zebra optimization algorithm: A new
bio-inspired optimization algorithm for solving op-
timization algorithm. IEEE Access 10 (2022),
49445–49473.

[42] Ullah, S., Khan, M. A., Ahmad, J., Ja-
mal, S. S., e Huma, Z., Hassan, M. T.,
Pitropakis, N., and Buchanan, W. J. Hdl-
ids: a hybrid deep learning architecture for intru-
sion detection in the internet of vehicles. Sensors
22, 4 (2022), 1340.

[43] Vyshnia, G. Feature importance
with featurewiz python. https:

//www.kaggle.com/code/gvyshnya/

jan22-tpc-feature-importance-with-featurewiz#

Introduction, Jan 2022.
[44] Wang, F., Zhang, W., Yang, Q., Kang, Y.,

Fan, Y., Wei, J., Liu, Z., Dai, S., Li, H.,
Li, Z., et al. Generation of a hutchinson–gilford
progeria syndrome monkey model by base editing.
Protein & cell 11, 11 (2020), 809–824.

[45] Wang, Y.-C., Houng, Y.-C., Chen, H.-X.,
and Tseng, S.-M. Network anomaly intrusion
detection based on deep learning approach. Sen-
sors 23, 4 (2023), 2171.

[46] Yuan, S., and Wu, X. Deep learning for insider
threat detection: Review, challenges and opportu-
nities. Computers & Security 104 (2021), 102221.

[47] Zhang, B., Zhang, Y., and Jiang, X. Feature
selection for global tropospheric ozone prediction
based on the bo-xgboost-rfe algorithm. Scientific
Reports 12, 1 (2022), 1–10.

[48] Zhang, Y., and Liu, Q. On iot intrusion detec-
tion based on data augmentation for enhancing
learning on unbalanced samples. Future Genera-
tion Computer Systems 133 (2022), 213–227.

[49] Zhou, C., and Chen, X. Predicting china’s en-
ergy consumption: Combining machine learning
with three-layer decomposition approach. Energy
Reports 7 (2021), 5086–5099.

[50] Zhou, L., Zhang, C., Liu, F., Qiu, Z., and
He, Y. Application of deep learning in food: a
review. Comprehensive reviews in food science and
food safety 18, 6 (2019), 1793–1811.

322

https://www.kaggle.com/code/gvyshnya/jan22-tpc-feature-importance-with-featurewiz#Introduction
https://www.kaggle.com/code/gvyshnya/jan22-tpc-feature-importance-with-featurewiz#Introduction
https://www.kaggle.com/code/gvyshnya/jan22-tpc-feature-importance-with-featurewiz#Introduction
https://www.kaggle.com/code/gvyshnya/jan22-tpc-feature-importance-with-featurewiz#Introduction

	1 Introduction
	2 Literature Review
	3 The Proposed HXGBLSTM Algorithm
	3.1 XGBoost Algorithm
	3.2 Long Short-Term Memory (LSTM)
	3.3 The Structure of the Proposed HXGBLSTM

	4 Experiments and Discussions
	4.1 System Configuration
	4.2 CSE-CIC-IDS2018 Dataset
	4.3 Evaluation Metrics
	4.4 Parameter Setting
	4.4.1 The Adjustment of the Dropout Rate
	4.4.2 The Adjustment of the Hidden Nodes
	4.4.3 The Adjustment of the Activation Function
	4.4.4 The Adjustment of the Epochs

	4.5 Feature Selection in HXGBLSTM
	4.6 Efficiency of The Proposed HXGBLSTM for Binary Classification
	4.6.1 Performance of The Binary Classification of The Standard LSTM and The Proposed HXGBLSTM
	4.6.2 HXGBLSTM Vs. Other Algorithms

	4.7 Efficiency of the Proposed HXGBLSTM for Multi-Class Classification
	4.7.1 Performance of the Multi-Class Classification of The Standard LSTM and The Proposed HXGBLSTM
	4.7.2 HXGBLSTM Vs. Other Algorithms

	5 Conclusion and Future Work
	6 Data Availability
	References

