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Abstract: This paper proposes a modification of the Bison Algorithm’s running technique, which allows the running group 

to exploit the areas of discovered promising solutions. It also provides a closer examination of the successful running 

behavior and its impact on the overall optimization process. The new algorithm is then compared to other optimization 

algorithms on the IEEE CEC 2017 benchmark solving continuous minimization problems.  
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1   Introduction 
A recent trend in the artificial intelligence is to take inspiration out of natural sources like the genome structure [1], 

evolution [2], or even animal behavior patterns [3] and use it for optimization. Particularly popular are the swarm 

algorithms - based on the collective intelligence phenomenon. Thanks to the inspiration from various occasions like the 

mating of fireflies [4], hunting techniques of wolf packs [5], or even cuckoos laying eggs [6], many successful 

optimization techniques were created. However, some of the swarm algorithms lean towards the premature convergence, 

since many algorithms rather emphasize exploitation at the expense of exploration in the later optimization process.  

To address this problem, the Bison Algorithm was proposed by Kazikova et al. in 2017, promoting the exploration 

phase in the same amount throughout the whole optimization process. The algorithm is based on a basic observation of 

the exploration and exploitation behavior of bison herds. The former follows the swarming manner of an endangered 

herd, while the latter finds inspiration in the bison running habit. Both of these practices happen in two separate groups 

simultaneously throughout the optimization course [7]. While the swarming group is mainly responsible for the 

exploitation and thus has a high impact on the overall convergence, the exploring running group secures the diversity of 

the population and keeps on searching the area to prevent the first group from getting stuck in local optima. 

However, up to now research suggested, that the running group has rather a limited impact on the overall optimization 

process [7,8,9]. This discovery provoked a question of the actual influence on the population and whether the runners 

have, in fact, the potential to affect and improve the final solution. 

In this paper, we examine the behavior of the successful running individuals and their impact on the bison population. 

We also propose a new running approach, that could inflict a greater influence of the successful running solutions, as it 

allows the running group to investigate the area of the promising solutions. 

The paper is structured as follows: section 2 introduces the Bison Algorithm and proposes a new run and seek behavior. 

Section 3 outlines the experiments for simulating the success of the running group and describes the methods used to 

determine the effectivity of the proposed modification. Section 4 presents the achieved results of the success simulation 

and the comparison of the modified Bison Algorithm with other well-established swarm algorithms like the Particle 

Swarm Optimization [10] and the Cuckoo Search [6] on the IEEE CEC 2017 benchmark [11]. Finally, in section 5 we 

discuss the outcome of the experiments and future research is considered in section 6. 

 

 

2   Bison Algorithm 
 

2.1   Inspiration 

The inspiration behind the Bison Algorithm comes from two behavior patterns of bison herds. When bison are in danger, 

they protect the weak by letting them swarm into the circle outlined by the strongest individuals. Bison herds are also a 

good example of an exploration model, as they are tireless runners [12]. 

 

2.1   Definition of the Bison Algorithm 

The algorithm divides the population into two groups: the swarming and the running group. The swarming group exploits 

the search space, by computing the center of the strongest individuals and moving all of the swarming members closer to 

the center. Meanwhile, the running group runs through the search space in a slightly altering direction, exploring the 

undiscovered areas. When a runner finds a better solution than a swarmer, the runner gets promoted to the swarming 

group, abandoning the weaker solution, while the running group stays unchanged (Algorithm 1). 
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Swarming behavior. The swarming movement is described in Algorithm 2. It starts by computing the center of the 

strongest individuals in the swarming group (Eqs. 1,2). Their number is specified by the elite group size parameter. Then 

each swarming member computes a new position candidate in the direction to the center and moves there if it improves 

its objective function value (Eqs. 3,4).  

 𝑤𝑒𝑖𝑔ℎ𝑡 = (10, 20, … ,10 ∙ 𝑠) (1) 

 𝑟𝑎𝑛𝑘𝑒𝑑 𝑐𝑒𝑛𝑡𝑒𝑟 = ∑
𝑤𝑒𝑖𝑔ℎ𝑡𝑖∙𝑥𝑖

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖
𝑠
𝑗=1

𝑠
𝑖=1  (2) 

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑥𝑜𝑙𝑑  (3) 

 𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 + 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∙ 𝑟𝑎𝑛𝑑(0, 𝑜𝑣𝑒𝑟𝑠𝑡𝑒𝑝)𝐷 (4) 

 

Where: 

- s is the elite group size parameter,  

- xi, xold, and xnew represent the ith and current solutions, and the new solution candidate,  

- rand(from, to) is a random number in the range of the two given arguments, 

- overstep is a parameter defining the maximum length of the swarming movement, 

- D represents the dimensionality of the problem. 

 
 

Running behavior. The running movement comes from the run direction vector, randomly generated during the 

initialization (Eq. 5) and subtly altered in each iteration (Eq. 6). Unlike the swarmers, the runners do not mind the solution 

quality when moving (Eq. 7). In the basic Bison Algorithm [8], the runners who find a better solution than a swarmer, 

copy their solutions into the swarming group. While the worse swarming solutions are abandoned, the original successful 

runners stay in the running group, and they move in the next iteration as expected. 

 𝑟𝑢𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑 (
𝑢𝑏−𝑙𝑏

45
 ,

𝑢𝑏−𝑙𝑏

15
)

𝐷
  (5) 

 𝑟𝑢𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  𝑟𝑢𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∙ 𝑟𝑎𝑛𝑑(0.9, 1.1)𝐷 (6) 

 𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 + 𝑟𝑢𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (7) 

Where:  

- rand(from, to) is a random number in the range of the two given arguments, 

- ub and lb are boundaries of the search space, 

- D represents the dimensionality of the problem, 

- xold, and xnew represent the old and the new solutions. 

 

Algorithm 1: Pseudo code of the basic Bison Algorithm 

Initialization:  

 objective function: f(x)=(x1, ..., xd) 

 generate the swarming group randomly 

 generate the running group around xbest 

 generate the run direction vector 

for every iteration do 

  bison in the swarming group swarm 

  bison in the running group run 

  copy successful runners to the swarming group 

  sort the swarming group by f(x) value 

end for 

 

Algorithm 2: Pseudo code of the swarming behaviour 

compute the center of elite bison group (Eqs. 1,2) 

for every bison in the swarming group do 

  compute new position candidate xnew (Eqs. 3,4)    

  if f(xnew) < f(xold)  

    then move to xnew 

end 
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Parameters and out of bound behavior. The algorithm operates on a hypersphere: when bison cross the borders of the 

search space, they appear on the other side of the dimension. The parameters of the algorithm are described in Table 1.  

Table 1: Parameters of the Bison Algorithm 

Parameter Description Recommended value 

Population  50 

Elite group size No. of best solutions for center computation 20 

Swarm group size No. of bison performing the swarming movement 40 

Overstep The maximum length of the swarming movement 

0 – no movement 

1 – max to the center 

3.5 

 

2.2   Bison Seeker Algorithm 

To address the question of the actual influence of the running group on the whole optimization process, we propose a 

modification of the Bison Algorithm called the Bison Seeker Algorithm. The modification has the same parameters and 

swarming behavior as the basic Bison Algorithm, and even the principles of the running movement based on the run 

direction vector coincide. However, it advances the behavior of the successful runners and adds them the possibility to 

exploit the promising solutions on their own as described in Algorithm 3. 

 

Run and seek behavior. When the running group finds a better solution than at least one member of the swarming group, 

the solution is copied to the swarming group, and runners become seekers for the following iteration. The seekers exploit 

the area around the promising solution with a behavior similar to the swarming movement with these alterations:  

1) the center of the running group is computed only from the successful runners,  

2) the overstep parameter of the seeking behavior is temporarily set to overstep=2.0. Since the running behavior happens 

without elitism, a higher overstep threshold would disband the seeking group instead of bringing them closer towards the 

solution. 

After 1 iteration without any further progress, the seekers are set into their original formation and moved to the 

corresponding location (Eq. 8). Figure 1 shows the movement of the Bison Seeker Algorithm on a 2-dimensional 

Rastrigin’s function. 

 𝑥𝑛𝑒𝑤 =  𝑥𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 + 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∙ 𝑟𝑢𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (8) 

Algorithm 3: Pseudo code of the Bison Seeker Algorithm 

Initialization:  

 objective function: f(x)=(x1, ..., xd) 

 generate the swarming group randomly 

 generate the run. group around xbest 

 generate the run direction vector 

  seek until=0 

for every iteration do 

 bison in the swarming group swarm 

 for every bison in the running group do 

    if iteration > seek until 

      then run 

    else if iteration == seek until 

      then return runners to the original formation (Eq. 8) 

    else 

      seek 

  end 

  check boundaries 

 if f(xrunner) < f(xswarmer) // running group is successful 

    then copy xrunner to the swarming group 

    seek until = iteration + 2 

  sort the swarming group by f(x) values 

end for 
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Figure 1: Movement of the Bison Seeker Algorithm on 2D Rastrigin’s function 

 

 

3   Methods 
To investigate the behavior of successful runners and seekers, we generated the running group around the known optimum 

location at 1000th iteration similarly as at the initialization (Eq. 9). All the following experiments were carried out on 51 

independent runs, each consisting of n=10 000∙dimension evaluations of the objective function. The test bed of functions 

is described below (Eqs. 10-13). 

 𝑟𝑢𝑛𝑛𝑒𝑟 = 𝑥𝑜𝑝𝑡 + 𝑟𝑎𝑛𝑑 (−
𝑢𝑏−𝑙𝑏

15
 ,

𝑢𝑏−𝑙𝑏

15
)

𝐷
 (9) 

Where:  

- xopt is the known optimum location, 

- rand is a random number, 

- ub and lb are the boundaries of the search space, 

- D represents the dimensionality of the problem. 

The 2nd De Jong´s function (Rosenbrock´s valley).  

 𝑓(𝑥) = ∑ 100(𝑥𝑖
2 − 𝑥𝑖+1)2 + (1 − 𝑥𝑖)2𝑑𝑖𝑚−1

𝑖=1   (10) 

Function minimum: Position for En: (x1, x2…xn) = (1, 1,…,1). Value for En: y = 0. 

Rastrigin’s function.  

 𝑓(𝑥) = 10 𝑑𝑖𝑚 + ∑ 𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑑𝑖𝑚
𝑖=1  (11) 

Function minimum: Position for En: (x1, x2…xn) = (0, 0,…,0). Value for En: y = 0. 

Schwefel´s function.  

 𝑓(𝑥) = 418.9829 − ∑ −𝑥𝑖sin (√|𝑥|)𝑑𝑖𝑚
𝑖=1   (12) 

Function minimum: Position for En: (x1, x2…xn) = (420.9687, 420.9687,…, 420.9687). Value for En: y = 0. 
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Easom function.  

 𝑓(𝑥) = − ∏ 𝑐𝑜𝑠(𝑥𝑖) ∙𝑑𝑖𝑚
𝑖=1 ∑ −(𝑥𝑖 − 𝜋)2𝑑𝑖𝑚

𝑖=1   (13) 

Function minimum: Position for En: (x1, x2…xn) = (π, π,…, π). Value for En: y = -dim. 

Table 2 presents the statistics of the obtained solutions during the success simulation experiments in the form: mean 

solution ± standard deviation (optimum find rate). The optimum find rate indicates the percentage of all the runs, where 

the algorithm found the exact global optimum with error value < E-30. The optimum find rate of 0% points to the fact 

that the error value was higher than E-30 in all the runs, which is expectable with high dimensional problems. Table 3 

shows all the cases of success simulation experiments, where one algorithm significantly outperformed the other one 

according to the Wilcoxon rank-sum test (α = 0.05).  

Figure 2 shows the mean convergence of the basic Bison Algorithm and the Bison Seeker modification comparing the 

standard runs with the simulated success experiment. Figure 3 presents the population distribution of a special case, which 

happened during the success simulation. The figure shows only 2 dimensions out of the 10-dimensional Rastrigin’s 

problem.  

The Bison Seeker Algorithm was then compared to other swarm optimization techniques like the Particle Swarm 

Optimization and the Cuckoo Search on the set of 30 functions of benchmark IEEE CEC 2017 [11]. Both these algorithms 

are well-established optimization techniques approved on many real-world problems [13,14]. The optimization algorithms 

are referenced as BIA (the basic Bison Algorithm), BSA (the Bison Seeker Algorithm), PSO (the Particle Swarm 

Optimization) and CS (the Cuckoo Search). Both the PSO and CS algorithms were implemented from the EvoloPy library 

[15] with their default parameters: PSO population = 50, vmax = 6, wmax = 0.9, wmin = 0.2, c1 = 2, c2 = 2; CS population = 

50, Pa = 0.25. The BIA and BSA parameters were set in accordance with values recommended in Table 1. 

Table 4 shows the algorithms, which significantly outperformed all of the other ones given the Wilcoxon rank-sum 

for 10, 30 and 50 dimensions (α = 0.05) and Table 5 compares the average performance and the standard deviation of the 

algorithms. 

Finally, Figure 4 shows the mean solution of the BSA, PSO, and CS on the IEEE CEC 2017 benchmark in 30 

dimensions. 

 

 

4   Results 

Table 2: Performance of BSA and BIA on functions with simulated success (avg ± std (optimum find rate)) 

10 dimensions Bison Seeker Algorithm Bison Algorithm 

Schwefel 342.8 ± 544.85 (55%) 1007.26 ± 627.48 (20%) 

Rastrigin 3.31 ± 4.12 (2%) 3.42 ± 3.11 (8%) 

Easom -7.62 ± 2.83 (80%) -6.47 ± 3.3 (59%) 

Rosenbrock 0.91 ± 0.84 (0%) 1.06 ± 1.14 (0%) 

30 dimensions 

Schwefel 578.43 ± 969.15 (18%) 3910.62 ± 1212.89 (0%) 

Rastrigin 20.19 ± 7.08 (0%) 22.44 ± 17.65 (0%) 

Easom -9.37 ± 11.1 (22%) -6.79 ± 9.29 (14%) 

Rosenbrock 13.68 ± 4.45 (0%) 12.3 ± 3.31 (0%) 

50 dimensions 

Schwefel 1152.8 ± 1094.59 (2%) 7562.9 ± 1501.15 (0%) 

Rastrigin 47.79 ± 2580714 (0%) 50.32 ± 27.83 (0%) 

Easom -3.73 ± 6.48 (2%) -5.35 ± 8.55 (2%) 

Rosenbrock 34.2 ± 11.35 (0%) 36.97 ± 16.27 (0%) 

Table 3: Winning algorithms on functions with simulated success (Wilcoxon rank-sum test α=0.05) 

Dimension Schwefel Easom Rosenbrock Rastrigin 

10 D BSA BSA - - 

30 D BSA - BIA - 

50 D BSA - - - 
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Figure 2: Mean convergence curves of BIA and BSA on 50D Schwefel’s function (on the left) and 50D Rastrigin’s 

function (on the right) 

 

Figure 3: Distribution of 2 dimensions on 10D Rastrigin’s success simulation 

Table 4: Winner algorithms on CEC 2017 

Dimension None BSA PSO CS 

10 D 10 8 2 10 

30 D 7 14 3 6 

50 D 3 14 7 6 
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Table 5: Performance of BSA, PSO and CS on benchmark IEEE CEC 2017 in 30D 

 BSA PSO CS 

 avg std avg std avg std 

f1 2.15E+03 2.66E+03 3.91E+03 5.11E+03 8.90E+02 7.49E+02 

f2 1.06E+12 5.00E+12 5.02E+23 3.58E+24 2.85E+11 6.21E+11 

f 3 7.45E+01 8.59E+01 3.42E-04 6.75E-04 3.39E+04 5.76E+03 

f4 1.36E+01 2.39E+01 9.31E+01 2.89E+01 6.82E+01 1.89E+01 

f5 6.54E+01 5.98E+01 1.52E+02 2.82E+01 1.37E+02 2.00E+01 

f 6 9.34E-04 3.16E-03 3.06E+01 9.78E+00 4.15E+01 9.07E+00 

f7 1.79E+02 3.73E+01 1.02E+02 2.21E+01 1.63E+02 2.11E+01 

f8 6.34E+01 5.92E+01 1.06E+02 1.90E+01 1.36E+02 1.76E+01 

f9 4.53E+00 5.61E+00 2.21E+03 9.68E+02 3.72E+03 1.14E+03 

f10 6.92E+03 5.70E+02 3.51E+03 6.38E+02 3.74E+03 2.57E+02 

f11 2.79E+01 2.53E+01 1.00E+02 3.55E+01 8.84E+01 1.82E+01 

f12 2.89E+04 1.87E+04 6.57E+05 2.05E+06 1.50E+05 5.39E+04 

f13 1.19E+04 1.18E+04 1.03E+05 6.20E+05 5.91E+03 4.01E+03 

f14 4.40E+03 3.52E+03 5.08E+03 5.80E+03 1.18E+02 1.84E+01 

f15 3.66E+03 4.49E+03 1.06E+04 1.28E+04 9.92E+02 6.81E+02 

f16 8.79E+02 4.71E+02 8.49E+02 2.54E+02 9.25E+02 1.35E+02 

f17 1.56E+02 1.34E+02 5.21E+02 1.90E+02 3.01E+02 8.57E+01 

f18 1.72E+05 1.61E+05 1.53E+05 1.55E+05 5.57E+04 1.50E+04 

f19 4.84E+03 6.15E+03 4.86E+03 6.42E+03 3.82E+02 2.91E+02 

f20 2.38E+02 1.87E+02 1.83E+02 1.30E+02 4.13E+02 8.57E+01 

f21 2.66E+02 5.71E+01 3.37E+02 2.85E+01 3.25E+02 4.04E+01 

f22 1.00E+02 5.90E-01 1.98E+03 1.96E+03 8.29E+02 1.52E+03 

f23 3.79E+02 1.24E+01 6.58E+02 1.04E+02 4.86E+02 2.73E+01 

f24 4.50E+02 2.36E+01 6.98E+02 6.72E+01 5.44E+02 4.98E+01 

f25 3.92E+02 1.26E+01 3.90E+02 4.03E+00 3.85E+02 1.27E+00 

f26 1.06E+03 5.48E+02 2.07E+03 1.60E+03 1.05E+03 4.45E+02 

f27 5.31E+02 1.20E+01 5.77E+02 5.06E+01 5.29E+02 7.43E+00 

f28 3.22E+02 4.31E+01 4.24E+02 4.38E+01 3.87E+02 3.43E+01 

f29 5.65E+02 1.30E+02 9.34E+02 2.20E+02 9.28E+02 7.87E+01 

f30 4.15E+03 1.46E+03 5.19E+03 3.11E+03 1.10E+04 3.43E+03 

  

Figure 4: Mean solution quality on 30D CEC 2017 

 

5   Discussion 
The success simulation experiments revealed the supremacy of the Bison Seeker Algorithm over the basic Bison 

Algorithm on the Schwefel’s function and 10-dimensional Easom function. When solving the 10-dimensional Schwefel’s 

function, the Bison Seeker Algorithm was ultimately able to find the exact optimum at 55% of the tested cases. 

Interestingly, in some functions, the success simulation did not seem to have the desired effect on the convergence of 

the algorithm (Figure 2). Closer investigation of the population distribution showed that in these cases the swarming 
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group was already stuck in a local optimum quite close to the global one. Therefore the much wider running group had 

no chance of affecting the final result even with the new seeking behavior, as illustrated in Figure 3. This phenomenon 

might transcend the Rosenbrock’s and Rastrigin’s function and point to a general issue, that the original wide formation 

of the running group may be unable to change the course of the optimization when the population is stuck in a local 

optimum very close to the global one. 

However, this clearly does not concern the Schwefel’s function, which operates on a considerably wider search space 

than the other tested functions (from -512 to 512 instead of the general –100, 100). It should also be pointed out, that 

without the success simulation, none of the Bison Algorithms outperformed the other. 
The comparison of BSA, PSO and CS showed promising results of the Bison Seeker Algorithm on a wider sample of 

functions. The BSA significantly outperformed the other algorithms on 14 functions out of 30 in both 30 and 50 dimensions 
according to Wilcoxon rank-sum test (α=0.05). Especially well it performed on F6 and F9, where it carried out very stable 
results even in high dimensions. The Cuckoo Search excelled when solving the 10-dimensional problems. 

 

 

6   Conclusion 
The proposed variation of the Bison Algorithm proved to be effective when solving the Schwefel’s function and was very 

often able to find the exact optimum. Also, the overall performance of the Bison Seeker Algorithm in comparison with 

other optimization techniques like the Particle Swarm Optimization and the Cuckoo Search proved the superiority of the 

Bison Seeker Algorithm when solving the 30 and 50-dimensional IEEE CEC 2017 benchmark problems. 

The investigation of the success simulation brought up an interesting discovery concerning the range of the exploring 

group. While the wide distribution of the running formation seemed to have a beneficial effect when solving the larger 

Schwefel’s function, it might have moderated the impact of the running group on the overall success of the Rastrigin’s 

function. Restricting the seeking behavior on a narrower space around the promising solution, or an adaptive range of the 

running formation might help to resolve this problem. Addressing this phenomenon should direct our future research. 
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