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Abstract
In this paper, the performance of the Differential Evolution algorithm is evaluated
when solving real-world problems. A Set of 13 engineering optimisation problems
was selected from the fields of mechanics and industry to illustrate the usability of
the Differential Evolution algorithm. Twelve variants of the standard Differential
Evolution with various settings of the control parameters are compared with 19
state-of-the-art adaptive variants of this algorithm. The results are analysed sta-
tistically to achieve significant differences. Three variants of adaptive Differential
Evolution provided better results compared to other algorithms. Some adaptive
variants of Differential Evolution perform significantly worse than the original Dif-
ferential Evolution with the fixed setting of the control parameters.
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1 Introduction

Engineering optimisation problems are often solved in
various fields of research, industry or mechanics. The
optimal solutions of these problems often have a crucial
impact on economic or ecological demands. Clearly,
using the most proper and powerful optimisation tech-
nique increases efficiency and decreases the costs of the
solution.

Generally, the global optimisation problem is defined
in the decision space Ω, which is bounded by limits,
Ω =

∏D
j=1[aj , bj ], aj < bj . Then, the objective func-

tion f is defined in all x ∈ Ω and the point x∗ for
f(x∗) ≤ f(x),∀x ∈ Ω is the solution of the global
optimisation problem.

There are many ways to find the solution of the op-
timisation problems. Besides the traditional determin-
istic approaches that exist, stochastic techniques are
inspired by processes from nature. A big group of
stochastic methods is called Evolutionary algorithms
(EAs) inspired by the evolution of species. One of the
most popular EA is called Differential evolution (DE),
and this algorithm will be used and studied in this pa-
per.

The main idea of this paper is to illustrate the ef-
ficiency of the well-known DE variants when solving
real-world engineering problems. A lot of engineer-
ing problems are defined by a small dimensionality,
and therefore, using the newly designed adaptive opti-
misation methods seems unnecessary. For this study,
several state-of-the-art DE algorithms are applied to
13 constrained optimisation engineering problems and
compared statistically with the results of the standard
DE using several settings of the control parameters.
The results promise to show which settings of the DE
control parameters or adaptation technique are bet-

ter in real-world engineering problems, which are often
solved in many fields of industry, research, and me-
chanics.

The rest of this paper is organised as follows. In Sec-
tion 2, standard DE and several well-known state-of-
the-art DE variants are selected and briefly described.
Section 3 provides brief information on the selected
engineering problems. In section 4, detail of the ex-
perimental comparison is provided. Sections 5 and 6
summarised a discussion of results and conclusions.

2 Differential Evolution

The DE algorithm was introduced in 1995 by Storn
and Price [13]. DE is a population-based optimisa-
tion algorithm from a group of evolutionary algorithms
which is very popular because of its simplicity and ef-
ficiency. The principle of this optimiser is depicted in
Algorithm 1. The population P is initialised randomly
in the search space Ω and evaluated by a cost function
f . Then, the population is developed gradually us-
ing three evolutionary operators – mutation, crossover,
and selection.

A mutation vector u is generated by a mutation op-
eration. There are many variants of mutation vari-
ants, and each performs differently when solving vari-
ous optimisation problems, where the most popular is
rand/1 (1). This mutation variant uses three randomly
selected individuals from the population, mutual from
the current individual. Parameter F is called scale fac-
tor, typically from F = (0, 2).

u = xr1 + F · (xr2 − xr3) (1)

Further, a new trial solution y is generated using
crossover operation by the combination of elements
from the original solution xi and mutation vector u.
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Algorithm 1 Pseudo-code of the DE algorithm

initialise population P = {x1,x2, . . . ,xN}
while stopping condition not reached do

for i = 1, 2, . . . , N do
create mutant vector u by mutation
create a new trial vector y by crossover
evaluate f(y)
if f(y) ≤ f(xi) then

insert y into next generation Q
else

insert xi into next generation Q

P ← Q

There are two widely-used crossover variants in DE, a
binomial and exponential. The widely used crossover
variant is binomial (2), where the crossover ratio CR ∈
(0, 1) controls the number of elements from a mutated
individual selected for a trial solution.

yi,j =

 ui,j , if randj(0, 1) ≤ CR or j = randj(1, D)

xi,j , otherwise.

(2)
If a new trial solution is outside of the search area Ω,

it is mirrored back. In constrained problems, it is also
necessary to check if the trial solution is located in the
feasible area (called feasible solution) or not. Kononova
et al. propose a comprehensive study comparing vari-
ous strategies for dealing with infeasible solutions [10].
Even though the efficiency of the standard DE algo-

rithm is sufficient on most optimisation problems. For
high dimensionality D or complex problems, DE often
gets stuck in local solution and do not provide accept-
able results. The problem is in fixed values of the DE
control parameters, F , CR, and N . Some recommen-
dations for selecting the proper variant of mutation and
crossover provide comprehensive study [7].
The solution to this problem provides an adapta-

tion of parameters in DE. Many adaptive DE variants
employ various mechanisms to change parameters dur-
ing the search process. This study selects several well-
known adaptive DE variants to solve real-world engi-
neering problems.

2.1 Variants of DE used in Experiment

This paper applies several well-known state-of-the-art
DE variants to real-world engineering problems to show
their true applicability. Also, standard DE with sev-
eral settings of its control parameters is employed to
illustrate if adaptation of the parameters provides a
significantly higher performance of the DE algorithm.
The DE variants are listed chronologically.

The standard DE with fixed parameter settings
uses only the most popular mutation variant rand/1,
whereas two crossover versions are compared, binomial
abbreviated by symbol ‘b’ and exponential denoted by
symbol ‘e’ in the comparison. Setting of numerical pa-
rameters (N , F , and CR) is illustrated in section 4.

In 2006, Brest et al. proposed a variant of adaptive
DE introducing a self-adaptive mechanism of the con-
trol parameters called jDE [2]. jDE uses the only com-
bination of rand/1 mutation and binomial crossover.
The control parameters of F and CR are sampled
randomly for each member of population (xi), F =
(0.1, 0.9) and CR = (0, 1). These values are resam-
pled in each generation with probability τ1 = τ2 = 0.1.
In this study, several settings of the jDE algorithm pa-
rameters are used.

In 2014, Wang et al. introduced a variant of CoBiDE
which uses the covariance-matrix-based crossover and
bimodal distribution of control parameters (F and CR)
using the values of the parameters in a stochastic man-
ner in order to adapt the parameter setting to the cur-
rently solved problem [17]. The exploitation of the co-
variance matrix should increase efficiency in optimisa-
tion problems where the coordinates of points in the
population are highly correlated.

In 2015, Tang et al. proposed a variant of IDE us-
ing an Individual-dependent mechanism [16]. A new
mutation scheme is dependent on the exploration and
exploitation phases and also on the superiority and in-
feriority of the current solution. The values of F and
CR are sampled for individuals independently accord-
ing to the quality of the individuals.

In 2016, Bujok et al. introduced an enhanced variant
of SHADE4 where four different DE strategies compete
to generate a new trial point [8, 9]. These strategies
are based on the combination of two kinds of muta-
tion (randrl/1 and current-to-pbest/1) and two types
of crossover (binomial and exponential). The strategies
are used to generate new trial points with a probabil-
ity equal to their success in previous generations. The
remaining setting of the SHADE4 variant is the same
as in the original SHADE [14].

Two new variants of SHADE4 were derived for this
study in the following manner. At first, a variant
of SHADE2 uses only the current-to-pbest mutation
with both crossover variants. Secondly, SHADE4eig
enhances the original SHADE4 by the Eigen transfor-
mation from CoBiDE.

In 2016, Polakova et al. proposed an improved ver-
sion of successful L-SHADE4 which uses the compe-
tition of four DE strategies based on randrl/1 and
current-to-pbest mutations, and binomial and expo-
nential crossover variants [12]. The L-SHADE4 is an
enhanced variant of the original L-SHADE [15], which
adapts the parameters of F and CR according to their
success in previous generations and uses an archive of
outperformed old individuals. The population size in
L-SHADE is linearly decreased to prefer the explo-
ration phase in the early stages and the exploitation
phase in the last stages of the search.

In 2017, Brest et al. proposed an adaptive DE called
jSO using a weighted selection of mutation strategy
and modified adaptation of the control parameters [3].
The variant of jSO was derived from the successful
L-SHADE variant, and it took second place in the
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CEC 2017 competition of the evolutionary methods.
In 2019, Bujok proposed a jSO variant with the com-

petition of eight strategies called cSO [5]. The original
combination of current-to-pbest mutation and binomial
crossover is completed by randrl/1 mutation and ex-
ponential crossover. These four combinations are also
used with the Eigen transformation used in CoBiDE.
All strategies compete to be selected and generate new
solutions with probabilities equal to success in previous
generations.

In 2019, Brest et al. introduced a variant of adap-
tive jDE100 [4] derived from the original jDE [2]. The
jDE100 uses two independent populations of individu-
als where rand/1 mutation and binomial crossover are
used. After each generation of a bigger population, the
best solution is stored in a smaller population, and sev-
eral generations of a smaller population are performed.
Parameters of F and CR are adapted similarly to the
original jDE. In this study, several settings of popula-
tion sizes are used.
In 2021, Bujok et al. proposed a variant of

DEDMNA using three mutation variants rand/1,
best/2, and rand-to-best/1, an archive of good histori-
cal solutions and linear population size adaptation [6].
The values of parameter F are computed for each
member of the population independently based on
the individual’s performance. Similarly, the values of
parameter CR are sampled for each individual inde-
pendently randomly from (0, 1). The values of both
parameters are resampled with a small probability of
0.1.

3 Engineering Optimisation Problems

In this paper, 13 optimisation problems from various
fields of engineering were selected as a benchmark. The
list of problems is in Table 1, and a detailed description
of the problems is provided in the study [1]. All the
problems are constrained by the linear and non-linear
limits of equality and non-equality. The dimensionality
of the problems is D ∈ (2, 11). For each problem,
the true optimal solution is provided to estimate the
efficiency of the optimisation algorithms. The value of
the optimal solution is given by the sum of the achieved
least function value f and violation v, f + v.
The Speed Reducer Design problem defines one of

the essential parts of the gearbox. The main goal of
this optimisation problem is to minimise the weight of
the speed reducer with subject to 11 constraints.

The Tension/Compression Spring Design problem is
focused on the minimisation of the weight of a tension
(compression) spring, subject to constraints on min-
imum deflection, shear stress, surge frequency, limits
on the outside diameter, and design variables.

The Pressure Vessel Design problem defines that a
cylindrical vessel is capped at two sides by hemispher-
ical heads. The goal is to minimise the total cost of
material, forming, and welding.

The Tree-Bar Truss Design Problem defines a three-
bar planar truss structure. The goal is to minimise

the volume of a statically loaded three-bar truss with
subject to constraints on each of the truss members.

The Gear Train Design problem is defined as an un-
constrained discrete problem in mechanical engineer-
ing. The goal of the problem is to minimise the ratio
of the angular velocity of the output shaft to the angu-
lar velocity of the input shaft (also called gear ratio).

The Cantilever Stepped Beam problem belongs to
continuous, discrete, and mixed variable structural
problems. The goal is to minimise the volume of the
beam.

The Optimal Design of I-Shaped Beam problem de-
fines how to minimise a vertical deflection of the beam,
respecting the cross-sectional area and constraints un-
der given loads.

The Tubular Column Design problem was defined to
minimise the cost of a compressive load of a uniform
column in the tubular section.

The Piston Lever problem provides the main objec-
tive of arranging the piston components by minimising
the oil volume, whereas the piston lever is lifted up.

The Corrugated Bulkhead Design problem min-
imises the corrugated bulkhead weight in a chemi-
cal tanker, where the width, depth, length, and plate
thickness are the design variables.

The Car Side Impact Design problem illustrates how
the car is exposed to a side impact. The goal of the
problem is to minimise the weight of the door defined
by nine control parameters as thicknesses of B-pillar
inner, B-pillar reinforcement, floor side inner, cross
members, door beam, door beltline reinforcement, roof
rail, materials of B-pillar inner, floor side inner, barrier
height, and hitting position.

The Design of Welded Beam problem shows how the
beam is under a vertical force. The goal is to find the
minimum manufacturing cost of the welded beam.

The Reinforced Concrete Beam Design problem rep-
resents the realisation of the reinforced concrete beam.
The goal is to minimise the cost of the structure, the
reinforcement area, the beam’s width, and the beam’s
depth.

Notice that the results of the algorithms on artifi-
cial problems and real-world problems are often differ-
ent. Kudela proposed a study focused on the different
performances of optimisation algorithms when solving
artificially constructed problems with solutions in the
centre of search space and real-world problems where
the solution is not in the centre [11].

4 Experiments

A set of 13 engineering optimisation problems is se-
lected for this study. The dimensionality and the op-
timal solutions of the problems are in Table 1. The
problems are constrained, and more detailed informa-
tion about the limits and conditions is in [1]. In the
experiments, 30 independent runs for each test prob-
lem are performed to assess a reliable sample of results
for analysis. In each run, the minimal function value of
the test problem achieved by the algorithm is used in
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Prob. Problem name D Optimal solution

1 Speed Reducer Design 7 2994.4244658
2 Tension/Compression Spring Design 3 0.012665232788
3 Pressure Vessel Design 4 6059.714335048436
4 Tree-Bar Truss Design Problem 2 263.89584338
5 Design of Gear Train 4 2.70085714e-12
6 Cantilever Stepped Beam 5 1.3399576
7 Optimal Design of I-Shaped Beam 4 0.0130741
8 Tubular Column Design 2 26.486361473
9 Piston Lever 4 8.41269832311
10 Corrugated Bulkhead Design 4 6.8429580100808
11 Car Side Impact Design 11 22.84296954
12 Design of Welded Beam 4 1.724852308597366
13 Reinforced Concrete Beam Design 3 359.2080

Table 1: Engineering problems info

the comparison. The algorithm’s run is restricted by
the number of function evaluations MaxFES= 9000.
The algorithms are stopped early if the difference be-
tween a founded solution and an optimal solution is
acceptable, i.e. less than = 1× 10−8.
The control parameters of all parameters are set ac-

cording to the original recommendations. Fixed pa-
rameters studied in this paper are abbreviated in the
names of algorithms as an index. The population size
is set automatically in jSO, cSO, and LSHADE4 vari-
ants according to dimensionality. The remaining vari-
ants use fixed population size (or its initial value) - Co-
BiDE has a population size set to 50, DEDMNA has
a dynamic size of initial population size, linearly de-
creased to 5, standard DE has a population size set to
(5, 10, 30, 50, 100, 200, 1000), IDE has population size
50, the population size of jDE is set to (5, 50), jDE100
has two populations, and their sizes are set to four
combinations (200 − 20, 500 − 25, 1000 − 25, 100 − 5),
SHADE4 has three different fixed population sizes
(10, 50, 100), SHADE4eig has population size 10. The
effect of population size is studied mainly in the classic
DE variant, where no adaptive mechanism is applied.
Further, several F and CR values in the classic DE

are set to show its efficiency - F = (0.1, 0.5, 0.8, 0.9)
and CR = (0.1, 0.5, 0.8, 0.9). Similarly, values of lower
and upper limits for generating F values are set to three
different combinations (0.1−0.5), (0.5−0.9), (0.1−0.9).
So, the variant of DEb50F08CR08 represents the stan-
dard DE with rand/1 mutation and binomial crossover,
population size N = 50, F = 0.8, and CR = 0.8.
All the algorithms are implemented in Matlab 2020b

environment. All computations were performed on a
standard PC with Windows 10, Intel(R) Core(TM)i7-
9700 CPU 3.0 GHz, 16 GB RAM.

5 Results

Twelve variants of the standard DE with various set-
tings of the control parameters are compared with 19
state-of-the-art DE algorithms when solving 13 real-
world engineering optimisation problems. The experi-

ment produces relatively huge data results to analyse;
therefore, an advanced statistical comparison is per-
formed besides standard descriptive values and plots.

The median values from 30 independent runs for
each algorithm and engineering problem are presented
in Tables 2-7. The best (minimal) achieved median
values are for each problem highlighted in bold and un-
derlined. More than one algorithm achieves the best
solution for most of the problems. But the highlighting
helps to see how efficient the methods are. Regarding
the classic DE variants, the best performing is DE with
binomial crossover, N = 10, F = 0.8, and CR = 0.5,
which is the original setting recommended by the au-
thors of DE. Very efficient is also the DE with bino-
mial crossover and N = 50, F = 0.8, and CR = 0.9.
The inefficient DE variants used huge population size
N = 200, 1000 or small CR = 0.1. Regarding all DE
variants, the best results achieved SHADE450 provides
the best results in 12 out of 13 engineering problems.
The variants of LSHADE4 and cSO are very efficient
and are the best in 11 and 10 problems. The variant
of jDE with N = 5 and F generated from (0.1, 0.5) is
not able to solve no engineering problem.

An insight into algorithms’ results’ variability pro-
vides the Box-plots in Figures 1-6. In most cases, the
algorithms provided the same results in the one en-
gineering problem, illustrated by no blue box and no
outlined red crosses. Therefore six problems with more
variable results are selected. The biggest variability of
results is observed for jDE variants, especially jDE with
N = 50 and F sampled from (0.1, 0.5).

To better insight into algorithms’ performance, the
Friedman test is applied. The medians of achieved min-
imum values at the end of the search (FES = 9,000 or
less) are used. The mean ranks are presented in Ta-
ble 8, where a lower rank means better performing DE,
and the algorithms are ordered from the best to the
worst. The null hypothesis on the equivalent efficiency
of the methods is rejected with p < 5× 10−6.

The best overall results provides SHADE450 variant
followed by LSHADE4 and jDE with N = 50, and F
sampled from (0.1, 0.9). Surprisingly, adaptive variants
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Table 2: Median values of the compared algorithms - 1.

Prob. DEb50F08CR05 DEb50F08CR08 DEb10F08CR05 DEb100F08CR05 DEb50F01CR05

1 2994.43 2994.43 2994.42 2994.775 2999.41
2 0.0127851 0.01266605 0.0127182 0.01309825 0.0135867
3 6062.21 6059.71 6059.71 6096.48 6410.09
4 263.896 263.896 263.896 263.896 263.896
5 1.166E-10 2.30782E-11 2.30631E-10 1.35559E-10 9.74565E-10
6 1.34097 1.34022 1.33998 1.345355 1.3434
7 0.0130809 0.0130741 0.0130741 0.01314945 0.0131296
8 26.4864 26.4864 26.4864 26.4874 26.4864
9 11.98405 8.41505 167.473 61.76575 12.7772
10 6.84298 6.84296 6.84296 6.84779 6.85033
11 22.8826 22.86645 22.843 23.1212 23.0776
12 1.733675 1.725075 1.72485 1.771525 1.86113
13 359.208 359.208 359.208 359.208 359.208

Table 3: Median values of the compared algorithms - 2.

Prob. DEb50F09CR05 DEb50F08CR01 DEb50F08CR09 DEb200F08CR05 DEb1000F08CR05

1 2994.43 2994.43 2994.43 3000.305 3069.71
2 0.0128465 0.01325465 0.0126653 0.0133211 0.0143878
3 6070.34 6223.55 6059.71 6176.89 6874.33
4 263.896 263.8995 263.896 263.897 263.919
5 1.545E-10 1.36165E-09 2.70086E-12 1.08005E-10 1.16612E-10
6 1.341525 1.348465 1.34001 1.37191 1.908215
7 0.0130897 0.0138714 0.0130741 0.0133145 0.01415825
8 26.4864 26.54615 26.4864 26.5033 26.6294
9 8.55837 8.704045 87.94291 65.10925 241.1185
10 6.84308 6.879495 6.84296 6.91793 7.34611
11 22.93365 23.0946 22.86015 23.5581 24.8954
12 1.73716 1.832565 1.7249 1.82632 2.069355
13 359.208 359.212 359.208 359.212 359.251

Table 4: Median values of the compared algorithms - 3.

Prob. DEb5F08CR05 DEe30F08CR05 DEDMNA5 SHADE4100 SHADE450

1 2994.46 2994.42 2998.375 2994.43 2994.42
2 0.013521 0.0126675 0.01338255 0.0126798 0.0126652
3 6410.09 6059.735 6167.205 6060.055 6059.71
4 263.896 263.896 263.902 263.896 263.896
5 6.353E-09 1.08005E-10 0.2097295 9.93988E-11 2.30782E-11
6 1.34093 1.34065 1.365205 1.340525 1.33996
7 0.0131789 0.0130751 0.0132624 0.0130743 0.0130741
8 26.4864 26.4864 26.5023 26.4864 26.4864
9 175.1045 8.4127 176.7815 8.413195 8.4127
10 6.84297 6.84296 6.85941 6.843065 6.84296
11 23.00725 22.88155 23.3265 22.85095 22.843
12 1.90241 1.72539 1.77365 1.72667 1.72485
13 360.743 359.208 359.4555 359.208 359.208

of cSO, jSO, etc., outperform several standard DE vari-
ants with N = 50 and high (more progressive) F , CR
settings. The variant of jDE with N = 5 and F gener-
ated from (0.1, 0.5) is the worst-performing method in
the comparison. So, lower values of F provide worse

results when solving engineering problems.

More detailed results can provide the Kruskal-Wallis
test applied to the results of each problem indepen-
dently. The null hypothesis was rejected for each en-
gineering problem (the significance level was less than
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Table 5: Median values of the compared algorithms - 4.

Prob. SHADE410 LSHADE4 cSO jDE100200 20 jDE100500 25

1 2994.42 2994.42 2994.42 2994.42 2994.42
2 0.0127055 0.0126652 0.0126652 0.0126801 0.01268835
3 6523.22 6059.71 6059.71 6059.72 6059.77
4 263.896 263.896 263.896 263.896 263.896
5 2.358E-09 0.06180385 0.220024 2.30782E-11 2.30782E-11
6 1.340095 1.33996 1.33996 1.340025 1.34033
7 0.0130741 0.0130741 0.0130741 0.01307485 0.0130769
8 26.4864 26.4864 26.4864 26.4864 26.4864
9 111.77205 8.4127 167.473 8.438285 22.6592
10 6.84296 6.84296 6.84296 6.84296 6.84296
11 22.8443 22.8432 22.8432 22.84835 22.85855
12 1.72485 1.72485 1.72485 1.725185 1.72731
13 359.208 359.208 359.208 359.208 359.208

1× 10−70). The number of problems where the meth-
ods achieve the best result, the second-best result, the
third-best result, and the worst result are provided in
Table 9. The algorithms are ordered from left top
to right bottom based on the numbers. The best re-
sults achieved cSO, followed by jSO, SHADE450, and
LSHADE4. The standard DE with N = 10, F = 0.8,
and CR=0.5 and N = 50, F = 0.8, and CR=0.5 out-
performed most of adaptive DE variants in the compar-
ison. The variant of jDE with N = 5 and F generated
from (0.1, 0.5) is the worst-performing algorithm.

Because the SHADE450 provided the best results
in the experiments, it was selected as the reference
method for applying the Wilcoxon rank-sum tests.
This test provides a comparison of all the algorithms
in the experiment with the reference (best) method to
show more detail. Due to the clarity, the number of
the problems where the reference method (SHADE450)
performs significantly better, similarly, and signifi-
cantly worse than the second method are provided in
Table 10. The methods are ordered from the best (non-
reference) algorithm to the worst method. The second
best method is LSHADE4, which performs worse than
the reference SHADE450 only in two problems, and it
is never better, followed by the cSO with three worse
results and zero better cases. The jDE with N = 5
and F ∈ (0.1, 0.5) performs significantly worse than
the reference method in all 13 engineering problems.

Each algorithm stopped when it achieved 9,000 of
the function evaluations or when the difference between
the founded solution and the optimal solution is less
than 1× 10−8. Most of the algorithms in the compari-
son achieved maximal provided FES, and only six were
able to provide the solution earlier. Table 11 illustrates
the fastest algorithms, where CoBiDE and DEDMNA
variants provided bad results for the problems.

Each algorithm in the comparison produced a new
trial solution, which replaced the original (old) solu-
tion if it was better. In these cases, the success of the
algorithm is increased by one. More information about
the performance of the algorithms provides in Table 12,

presenting the median values of algorithms’ success re-
garding all 13 engineering problems. Notice that these
values are computed in view of the achieved number of
function evaluations because some algorithms provided
the results early before final FES=9,000. Algorithms
are ordered from the more successful in the reproduc-
tion process to the less successful. The most successful
algorithm is CoBiDE, with more than 87 % of success.
Although this algorithm is very fast, its performance
is not high as for other adaptive DE variants.

Figure 1: Results of the algorithms on the problem 1.

6 Conclusion

In this paper, 31 variants of the DE algorithm (12 stan-
dard DE and 19 adaptive DE) are compared when solv-
ing 13 real-world engineering problems. The final re-
sults of the algorithms were statistically compared with
several interesting conclusions.

Only several adaptive DE variants perform signifi-
cantly better than the standard DE with a proper set-
ting regarding all 13 problems, SHADE450, LSHADE4,
and jDE50F0109.
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Table 6: Median values of the compared algorithms - 5.

Prob. jDE1001000 25 jDE100100 5 jDE5F0109 jDE5F0509 jDE5F0105

1 2994.43 2995.855 3186.36 2994.5 3411.645
2 0.0127131 0.01277805 0.0159849 0.0135403 0.06142775
3 6060.14 6086.715 7787.165 6820.41 11304.85
4 263.896 263.896 264.0585 263.896 265.5115
5 1.356E-10 2.30782E-11 2.5669E-08 2.35764E-09 5.06474E-07
6 1.34036 1.35059 2.8573 1.34326 4.92805
7 0.0130791 0.01314905 0.0144837 0.01309835 0.04178755
8 26.4864 26.4864 26.4866 26.4864 29.18905
9 10.769645 15.6576 477.7895 201.779 901.4045
10 6.84297 6.851765 7.574705 6.845435 10.23008
11 22.8693 23.0622 25.7113 23.2106 27.1776
12 1.73058 1.749345 3.063145 1.849895 3.84543
13 359.208 359.208 362.4805 360.733 369.966

Table 7: Median values of the compared algorithms - 6.

Prob. jDE50F0109 SHADE4eig SHADE2 jSO CoBiDE IDE

1 2994.42 2994.42 2994.42 2994.42 2994.73 2994.45
2 0.0126771 0.0126856 0.01271165 0.0126655 0.0126834 0.01831
3 6059.71 6410.09 6343.295 6059.71 6060.135 6111.1
4 263.896 263.896 263.896 263.896 263.896 263.896
5 2.308E-11 1.12777E-09 1.26338E-09 0.222494 2.30782E-11 0.31135
6 1.33996 1.340125 1.34031 1.33996 1.342395 1.34607
7 0.0130742 0.0130741 0.0130741 0.0130741 0.0130772 0.01309
8 26.4864 26.4864 26.4864 26.4864 26.4864 26.4864
9 8.419635 8.4127 167.473 167.473 10.1846 167.567
10 6.84296 6.84296 6.84296 6.84296 6.843655 6.84296
11 22.8433 23.1845 23.1845 22.8433 22.95775 22.9222
12 1.724945 1.72485 1.72485 1.72485 1.728155 1.72656
13 359.208 359.208 359.208 359.208 359.208 359.208

Table 8: Mean ranks from the Friedman test of median values.

SHADE450 LSHADE4 jDE50F0109 DEb50F08CR08 DEb50F08CR09

6.2 8.0 8.2 9.4 9.4

jDE100200 20 cSO DEb10F08CR05 jSO DEe30F08CR05

9.6 9.7 10.0 10.2 10.7

jDE100500 25 SHADE4eig SHADE4100 SHADE410 SHADE2
11.6 11.9 12.2 12.4 13.8

jDE1001000 25 CoBiDE DEb50F08CR05 DEb50F09CR05 jDE100100 5

14.5 14.8 15.5 16.2 17.9

IDE DEb100F08CR05 DËb50F01CR05 DEb5F08CR05 jDE5F0509

18.7 20.0 20.3 21.6 22.8

DEb50F08CR01 DEb200F08CR05 DEDMNA5 DEb1000F08CR05 jDE5F0109

23.0 24.2 25.8 27.5 29.2

jDE5F0105

30.6

The optimal settings of the standard DE for the en-
gineering problems that are represented by constrained
functions with a small dimensionality are N = 50,
F = 0.8, and CR = 0.8, 0.9. The success of the higher

values of F and CR means that more distant mutation
individuals are able to find the optimal solution. Big
population size (N = 200, 1000) and small population
size (N = 5) performed worse. The performance of the
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Table 9: Number of 1st, 2nd, 3rd, and the last positions of all algorithms from the Kruskal-Wallis tests.

cSO jSO SHADE450 LSHADE4 DEb10F08CR05

10/10/8/1 8/8/9/0 7/8/10/0 7/6/6/0 6/5/5/0

DEb50F08CR09 DEe30F08CR05 SHADE410 jDE50F0109 SHADE4eig
6/5/5/0 5/6/5/0 5/5/5/0 5/5/5/0 5/5/5/0

SHADE2 jDE100200 20 CoBiDE DEb50F08CR05 DEb50F08CR08

5/5/5/0 4/4/4/0 3/4/3/0 3/3/3/0 3/3/3/0

DEb50F09CR05 SHADE4100 jDE100500 25 jDE1001000 25 IDE
3/3/3/0 3/3/3/0 3/3/3/0 3/3/3/0 3/3/3/0

jDE100100 5 DEb100F08CR05 DEb50F01CR05 DEb50F08CR01 DEb200F08CR05

2/2/2/0 1/1/1/0 0/0/0/0 0/0/0/0 0/0/0/0

DEb5F08CR05 DEDMNA5 jDE5F0109 jDE5F0509 DEb1000F08CR05

0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/1

jDE5F0105

0/0/0/11

Table 10: Number of worse, similar, and better results of all algorithms compared to SHADE450 and the
significant differences from the Wilcoxon rank-sum tests.

LSHADE4 cSO DEb10F08CR05 jSO jDE50F0109

2/11/0 3/10/0 4/9/0 4/9/0 5/8/0

SHADE4eig DEb50F08CR09 DEb50F08CR08 SHADE410 SHADE2
5/8/0 6/7/0 6/7/0 6/7/0 6/7/0

DEe30F08CR05 jDE100200 20 jDE100500 25 jDE100100 5 CoBiDE
7/6/0 7/6/0 7/6/0 9/4/0 9/4/0

IDE DEb50F08CR05 DEb50F01CR05 DEb50F09CR05 SHADE4100
9/4/0 10/3/0 10/3/0 10/3/0 10/3/0

jDE1001000 25 DEb100F08CR05 DEb5F08CR05 jDE5F0509 DEb50F08CR01

10/3/0 11/2/0 11/2/0 11/2/0 13/0/0

DEb200F08CR05 DEb1000F08CR05 DEDMNA5 jDE5F0109 jDE5F0105

13/0/0 13/0/0 13/0/0 13/0/0 13/0/0

Table 11: Median of algorithms’ number of function
evaluations necessary to solve all 13 problems.

Algorithm FES

CoBiDE 1047
DEDMNA5 5756
DEb10F08CR05 7860
LSHADE4 8206
SHADE4eig 4245
jSO8eig 8130

standard DE decreases with decreasing value of CR.

Although the adaptive DE variants use an enhanced
approach to adapt the setting of the control parame-
ters to achieve success in the currently solved problem,
it is surprising that only some adaptive DE outperform
the standard DE. The DE variants using fixed popula-
tion size (CoBiDE, IDE, jDE, jDE100, SHADE4, and
SHADE4eig) are underprivileged compared to versions
with an adaptation of N (DEDMNA5, jSO, jSO8eig,

Figure 2: Results of the algorithms on the problem 5.

and LSHADE4). Therefore it is interesting that vari-
ants of SHADE450 or jDE50F0109 are on the top po-
sitions in the comparison. The common denomina-
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Table 12: Median of algorithms’ success (%) regarding all 13 problems.

Algorithm Succ. Algorithm Succ. Algorithm Succ.

CoBiDE 87.2 SHADE450 25.4 DEb100F08CR05 14.5
DEb1000F08CR05 37.3 LSHADE4 23.9 DEb50F08CR08 17.3
jSO8eig 32.5 jDE100100 5 23.6 DEe30F08CR05 13.4
DEDMNA5 30.1 jSO 24.4 DEb50F08CR05 12.1
SHADE4eig 38.9 IDE 21.4 DEb50F09CR05 11.5
jDE1001000 25 27.9 jDE100200 20 23.2 DEb50F08CR01 8.6
DEbin50F01CR05 22.6 DEb200F08CR05 21.1 DEb10F08CR05 11.1
DEbin50F01CR05 22.6 DEb200F08CR05 21.1 DEb10F08CR05 11.1
DEb50F01CR05 22.6 DEb200F08CR05 21.1 DE10F08CR05 11.1
SHADE410 35.5 jDE50F0109 17.1 jDE5F0109 7.7
SHADE4100 26.8 jDE5F0509 16.7 DEb5F08CR05 5.1
jDE100500 25 26.1 DEb50F08CR09 19.8 jDE5F0105 4.1
SHADE2 33.3

Figure 3: Results of the algorithms on the problem 6.

Figure 4: Results of the algorithms on the problem 10.

tor of these algorithms is the ‘middle’ population size,
N = 50. Variants with higher or smaller population
sizes perform worse. Adapting the DE control param-
eters provided better results than the standard DE;

Figure 5: Results of the algorithms on the problem 11.

Figure 6: Results of the algorithms on the problem 12.

nevertheless, the variants with fixed parameters need
tuning to be usable in engineering practice. Achieved
conclusions enable future research on a new algorithm
with good accuracy and lower time complexity.
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