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Abstract: In this study, we propose a repulsive mechanism for the Particle Swarm Optimization algorithm that improves 
its performance on multi-modal problems. The repulsive mechanism is further extended with a distance-based 
modification. The results are presented and tested for statistical significance. We discuss the observations and propose 
further directions for the research. 
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1 Introduction 
The Particle Swarm Optimization (PSO) [1-4] is one of the most popular metaheuristics for global optimization if not the 
most popular (according to the number of research papers published every year). The method is widely used in all areas 
of industrial optimization and remains in the center of interest of the research community [5,6].  

One of the well-known weakness of PSO is the inclination to premature convergence into local optima. In [7] a 
repulsive mechanism was proposed to address this issue and serves as an inspiration for this work. In this initial study, 
the core PSO formula is altered by introducing a particle-to-particle repulsivity and a distance-based repulsivity multiplier. 
The aim is to find a balanced method for both smooth unimodal and complex multi-modal fitness landscapes. The 
experimental part utilizes four well-known benchmark functions. 

The main aim of this initial study is not to present a developed highly competitive method but to highlight the 
usefulness of the repulsive mechanic and serve as a background for future research in this direction. 

The rest of the paper is structured as follows: In section 2, the PSO algorithm is described. In section 3, the proposed 
modification is detailed. The experimental details are given in section 4. The results are presented in section 5, followed 
by a discussion and the conclusion. 
 

2 Particle Swarm Optimization (PSO) 
The original PSO [1] takes the inspiration from the flocking behavior of birds. In the start, a population (swarm) of 
candidate solutions (particles) of the optimization problem (defined by a cost function) is randomly generated. Each 
particle is evaluated (assigned a quality quantification using the cost function). Next, the particles simulate a bird flight 
over the fitness landscape. The knowledge of the global best-found solution (typically noted gBest) is shared among the 
particles in the swarm. Furthermore, each particle has the knowledge of its own (personal) best-found solution (noted 
pBest). Last important part of the algorithm is the velocity of each particle that is taken into account during the calculation 
of the particle movement. The new position of each particle is then given by (1), where �⃗�

௧ାଵ is the new particle position; 
�⃗�

௧ refers to the current particle position and �⃗�
௧ାଵis the new velocity of the particle. 

 
𝒙ሬሬ⃗ 𝒊

𝒕ା𝟏 ൌ 𝒙ሬሬ⃗ 𝒊
𝒕  𝒗ሬሬ⃗ 𝒊

𝒕ା𝟏 (1) 
 
To calculate the new velocity, the distance from pBest and gBest is taken into account alongside with current velocity (2). 
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𝑣
௧ାଵ ൌ 𝑤 ⋅ 𝑣

௧  𝑐ଵ ⋅ 𝑅𝑎𝑛𝑑 ⋅ ሺ𝑝𝐵𝑒𝑠𝑡 െ 𝑥
௧ ሻ  𝑐ଶ ⋅ 𝑅𝑎𝑛𝑑 ⋅ ሺ𝑔𝐵𝑒𝑠𝑡 െ 𝑥

௧ ሻ (2) 
 
Where: 
𝑣

௧ାଵ – New velocity of the 𝑖th particle in iteration 𝑡  1 (component 𝑗 of the dimension D). 
𝑤   – Inertia weight value. 𝑣

௧ାଵ– Current velocity of the 𝑖th particle, iteration 𝑡 (component 𝑗 of the dimension D). 
𝑐ଵ, 𝑐ଶ – Acceleration constants.  
𝑝𝐵𝑒𝑠𝑡 – Local (personal) best solution found by the 𝑖th particle. (component 𝑗 of the dimension D). 
𝑔𝐵𝑒𝑠𝑡 – Best solution found in a population. (component 𝑗 of the dimension D). 
𝑥

௧   – Current position of the 𝑖th particle (component 𝑗 of the dimension D) in iteration t.  
𝑅𝑎𝑛𝑑 – Pseudo random number, interval (0, 1).  
 
After the movement, the particle evaluates the quality of its new position and compares it with its personal best solution 
(pBest). If a better value was discovered, the pBest is updated. Similarly, if the new best solution in the neighborhood 
(swarm or sub-swarm) was discovered, the gBest is updated.  

There are two models for pBest/gBest updating, the Asynchronous and Synchronous updating [8]. In the Synchronous 
model, the pBest and gBest are updated in one moment for all particles (therefore only one update of gBest per iteration 
is performed). In the Asynchronous model, the pBest and gBest are updated immediately after the better value is 
discovered (therefore, multiple updates of gBest per iteration are possible). 
 

3 Proposed Modification 
In the original PSO, the exploration phase often ends prematurely, and the algorithm starts exploiting the current sub-
optima almost instantly. This leads to a poor performance when facing complex multi-modal problems. To prevent the 
swarm from instant convergence, a partial repulsivity is proposed in this work. The swarm is indexed into a ring topology; 
therefore, it is easy to assign each particle a single neighbor with indexes higher by one. Given the ring topology, the last 
particle in the population is neighboring the first particle in the population. The velocity calculation formula is altered to 
the form given by (3) and (4).  
 

𝑣
௧ାଵ ൌ 𝑤 ∙ 𝑣

௧  𝑐ଵ ∙ 𝑅𝑎𝑛𝑑ଵ ∙ ൫𝑝𝐵𝑒𝑠𝑡 െ 𝑥
௧ ൯  𝑐ଶ ∙ 𝑅𝑎𝑛𝑑ଶ ∙ ൫𝑔𝐵𝑒𝑠𝑡 െ 𝑥

௧ ൯ െ 𝑐ଷ ∙ 𝑅𝑎𝑛𝑑ଷ ∙ ൫𝑥
௧ െ 𝑥

௧ ൯ (3)
 
Where: 
𝑐ଷ  – repulsive constant 
𝑅𝑎𝑛𝑑ଷ  – Pseudo-random number, uniform distribution, interval (0, 1).  
𝑘  – index of neighboring particle in the population (4) 
  

𝑘 ൌ ሺ𝑖 𝑚𝑜𝑑 𝑁𝑃ሻ  1 (4)
 
Where: 
𝑖  – index of the active particle, 𝑖 ∈ 〈1; 𝑁𝑃〉  
𝑁𝑃 – population size 
 
Each particle is partially repulsed from its right-hand side neighbor in the ring topology. This unique repulsivity on single-
particle level helps slow down the convergence of the swarm but does not prevent the convergence completely. As no 
two particles share the same point of repulsivity, the natural movement of the swarm is maintained. Using this method, 
the exploration phase is prolonged, while the exploitation phase is not abandoned. After extensive testing, the value of c3 
has been set to 0.15. For this value, the algorithm seems to achieve the best performance. 

3.1 Distance-based Approach 

In the above-presented design, the repulsive force is affecting the particles regardless of their mutual distance, and similar 
force is applied in each dimension. However, it seems more natural that the repulsive force should increase with the 
particles near each other. For this reason, a distance-based repulsivity multiplier is introduced in (5). 
 

𝑣
௧ାଵ ൌ 𝑤 ∙ 𝑣

௧  𝑐ଵ ∙ 𝑅𝑎𝑛𝑑ଵ ∙ ൫𝑝𝐵𝑒𝑠𝑡 െ 𝑥
௧ ൯  𝑐ଶ ∙ 𝑅𝑎𝑛𝑑ଶ ∙ ൫𝑔𝐵𝑒𝑠𝑡 െ 𝑥

௧ ൯ െ 𝑐ଷ ∙ 𝑟𝑒𝑝 ∙ 𝑅𝑎𝑛𝑑ଷ ∙ ൫𝑥
௧ െ 𝑥

௧ ൯ (5)
 
Where: 𝑟𝑒𝑝 – Distance based repulsivity multiplier (component 𝑗 of the dimension D). 
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The value of the distance-based multiplier is given by (6). The formula was derived after extensive testing. 
 

𝑟𝑒𝑝 ൌ െ ቆ1 ቆ1  𝑒
.ଵ൬ିቚ௫ೖೕ

 ି௫ೕ
 ቚା൫୰ୟ୬ୣౠ ସ⁄ ൯൰

ቇൗ ቇ (6)

 
Where: range୨ – objective function range (component 𝑗 of the dimension D). 
 
An exemplary depiction of the value of Distance-based repulsivity multiplier is presented in Fig. 1. 
 

 
 

Figure 1: Distance-based repulsivity multiplier values (example for Schwefel function, range = 1000) 

 
 

4 Experiment    
In the experimental part, the performance of both proposed modifications was tested using well-known unimodal and 
multimodal functions [9] in several different dimensional settings. To provide a fair comparison, the newly proposed 
modifications are compared with both asynchronous and synchronous updating PSOs. The control parameters were set 
as follows (in accordance with common values and recommendations in [6]): 
 
𝑁𝑃: 30; max. CFE: 30 000; 𝑑𝑖𝑚 = 10, 30, 50; 𝑤 = 0.7298; 𝑐ଵ, 𝑐ଶ = 1.49618; 𝑐ଷ = 0.15; 
 
Following set of four common test functions was used:  
The Sphere function is given by (7). 

 𝑓ሺ𝑥ሻ ൌ ∑ 𝑥
ଶௗ

ୀଵ  (7) 

Function minimum: 
Position for En: (𝑥ଵ, 𝑥ଶ, … , 𝑥) = (0, 0, …, 0); Value for En: 𝑓ሺ𝑥ሻ = 0 
 
The Rosenbrock’s function is given by (8). 

 𝑓ሺ𝑥ሻ ൌ ∑ 100ሺ𝑥
ଶ െ 𝑥ାଵሻଶ  ሺ1 െ 𝑥ሻଶௗ ିଵ

ୀଵ  (8) 

Function minimum: 
Position for En: (𝑥ଵ, 𝑥ଶ, … , 𝑥) = (1, 1, …, 1); Value for En: 𝑓ሺ𝑥ሻ = 0 
 
The Rastrigin’s function is given by (9). 

 𝑓ሺ𝑥ሻ ൌ 10 𝑑𝑖𝑚  ∑ 𝑥
ଶ െ 10 𝑐𝑜𝑠ሺ 2𝜋𝑥ሻ

ௗ
ୀଵ  (9) 

 
Function minimum: 
Position for En: (𝑥ଵ, 𝑥ଶ, … , 𝑥) = (0, 0, …, 0); Value for En: 𝑓ሺ𝑥ሻ = 0 
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The Schwefel’s function is given by (10) 

 𝑓ሺ𝑥ሻ ൌ ∑ െ𝑥 𝑠𝑖𝑛ሺ ඥ|𝑥|ሻௗ
ୀଵ  (10) 

Function minimum: 
Position for En: (𝑥ଵ, 𝑥ଶ, … , 𝑥) = (420.969, 420.969, …, 420.969); Value for En: 𝑓ሺ𝑥ሻ = 0 

 

4.1 Results 

In Table 1, the mean results of all compared algorithms are presented. Further, the Wilcoxon rank sum test with a level 
of significance alpha 0.05 was used to test all pairs of algorithms. The winner is identified if it managed to outperform all 
remaining algorithms with statistical significance. Otherwise, the winner is not designated. 

In subsequent Table 2 similar Wilcoxon test results are given for selected combinations of algorithms. The notation is 
as follows: A1 – Asynchronous PSO, A2 – Synchronous PSO, A3 – PSO Repuls, A4 – PSO Repuls 2 (with distance-
based multiplier). 

In Fig. 2, the rankings according to Friedman rank sum test are given alongside with the Nemenyi posthoc test critical 
distance line. Finally, as an example, the mean history of gBest value comparisons for 𝑑𝑖𝑚 = 30 are given in Fig. 3 – 6. 

Table 1: Mean results overview, Wilcoxon test winners noted 

function PSO Async.   PSO Sync. PSO Repuls. PSO Repuls. 2 winner 

dim = 10 
Sphere 0.00E+00 0.00E+00 2.94E-28 0.00E+00 - 
Rosenbrock 2.83E+01 1.92E+01 2.24E+01 1.90E+01 - 
Rastrigin 7.23E+00 7.96E+00 4.59E+00 6.43E+00 PSO Repuls. 
Schwefel 9.44E+02 9.68E+02 9.72E+01 4.96E+02 PSO Repuls. 

dim = 30 
Sphere 3.42E-15 1.01E-12 3.57E-09 1.02E-11 PSO Async. 
Rosenbrock 1.07E+02 7.49E+01 1.46E+02 8.73E+01 - 
Rastrigin 1.19E+02 1.28E+02 6.84E+01 9.66E+01 PSO Repuls. 
Schwefel 4.48E+03 4.76E+03 2.03E+03 2.84E+03 PSO Repuls. 

dim = 50 
Sphere 3.62E-05 1.32E-02 2.37E-03 4.83E-04 PSO Async. 
Rosenbrock 1.84E+02 3.38E+02 5.47E+02 2.85E+02 PSO Async. 
Rastrigin 4.05E+02 4.93E+02 2.35E+02 2.83E+02 PSO Repuls. 
Schwefel 8.62E+03 8.61E+03 4.53E+03 5.48E+03 PSO Repuls. 

 

 

Figure 2: The Friedman ranks with the Nemenyi posthoc test 
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Table 2: Wilcoxon tests winners 

 function A1 / A2 / A3 A1 / A2 / A4 A3 / A4 

 dim = 10  

Sphere - - A4 

Rosenbrock - - - 

Rastrigin A3 - A3 

Schwefel A3 A4 A3 

 dim = 30  

Sphere A1 A1 A4 

Rosenbrock - - - 

Rastrigin A3 A4 A3 

Schwefel A3 A4 A3 

 dim = 50  

Sphere A1 A1 A4 

Rosenbrock A1 A1 A4 

Rastrigin A3 A4 A3 

Schwefel A3 A4 A3 

 
 

 
Figure 3: Mean gBest history – Sphere function 𝑑𝑖𝑚 = 30 

 

 
Figure 4: Mean gBest history – Rosenbrock function 𝑑𝑖𝑚 = 30 

 

 
Figure 5: Mean gBest history – Rastrigin function 𝑑𝑖𝑚 = 30 

 

 
Figure 6: Mean gBest history – Schwefel function 𝑑𝑖𝑚 = 30 

5 Discussion 
According to the above-presented results, the introduction of particle-to-particle repulsivity leads to significant 
improvement of the performance of the algorithm on multi-modal problems. However, the performance of smoother 
landscapes is significantly worse. According to Fig. 2, the distance-based modification presents the best overall 
performance. It seems that the variant noted as PSO Repuls. 2 is balanced for use on any shape of the fitness landscape. 
However, given that all ranks are within the critical distance of post-hoc test, it is necessary to further improve the method 
to achieve results of statistical significance across the whole benchmark set. 

The convergence speed seems comparable (Fig. 3 -6). However, both proposed modifications seem to avoid local 
optima better than either asynchronous or synchronous PSO. 
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6 Conclusion 
In this work, a modification of the Particle Swarm Optimization core formula is proposed. The goal is to improve the 
performance of the algorithm on complex multimodal problems and higher dimensions. According to the evidence, it 
seems the proposed method is capable of better avoiding the local optima on the multi-modal landscape. However, a more 
balanced performance is achievable when a distance based repulsivity multiplier is introduced. This initial design shows 
very promising performance. However it needs a further enhancement that will be the main focus of the future research. 
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