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Abstract

Deep convolutional neural networks (DCNNSs) have been successfully applied to
plant disease detection. Unlike most existing studies, we propose feeding a DCNN
CIE Lab instead of RGB color coordinates. We modlified an Inception V3 architec-
ture to include one branch specific for achromatic data (L channel) and another
branch specific for chromatic data (AB channels). This modification takes advan-
tage of the decoupling of chromatic and achromatic information. Besides, splitting
branches reduces the number of trainable parameters and computation load by up
to 50% of the original figures using modified layers. We achieved a state-of-the-art
classification accuracy of 99.48% on the Plant Village dataset and 76.91% on the

Cropped-PlantDoc dataset.
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1 Introduction

The automation of plant disease control is essential for
early-stage symptom detection and continuous moni-
toring of crops. Such automation has a high impact
on improving efficiency and productivity, especially in
large fields [41]. To automatically recognize plant leaf
diseases, emerging Al technologies such as computer vi-
sion and deep convolutional neural networks (DCNNs)
have been recently employed.

Initial studies used handcrafted features from leaf
images [21]. Shallow classifier algorithms were pro-
posed: the K-Nearest-Neighbors (KNN), Support Vec-
tor Machines (SVMs), decision trees and shallow non-
convolutional neural networks [21]. Later, the trend
switched to DCNN architectures capable of automati-
cally extracting features and performing efficient clas-
sification [21]. Many CNN architectures, including
LeNet [2], CaffeNet [33], AlexNet [18], GoogLeNet
21, 20, 6], Inception V3 [21, 23, 37, 36, 19] and
DenseNet [21] have been applied to plant disease image
classification.

The majority of the previous architectures applied to
plant leaf disease identification use the Red-Green-Blue
(RGB) color values of input pixels. However, RGB
components are highly correlated [22]. Specifically,
intensity variations induced by illumination changes,
edges or texture modify the three RGB values by the
same proportion.

Transforming RGB channels into some type of
achromatic-chromatic space, such as CIE Lab, effec-
tively isolates the gray-level features in the L channel
and the color-related features in the AB channels.

Many other color transformations that decorrelate
the RGB channels have been proposed, such as
HSV, YUV, YIQ, etc., which are vastly known and
long-standing in the fields of color perception [25]
and colorimetry [40]. However, we think that the
CIE LAB color space is the most convenient for our
task because the AB chromatic components layout
the chromaticities in a cartesian space, while others
like HSV use a polar space: the Hue component is
circular, so the ends of the component range are
connected, which is something that CNNs cannot deal
with. Besides, other authors like Gowda et al. [11]
found that CIE Lab color space provided the best
classification accuracy when training a DCNN with
the CIFAR-10 dataset [17], compared to other nine
color spaces (RGB, HSV, YUV, YIQ, XYZ, YPbPr,
YCbCr, HED and LCH).

In an initial work [30], we trained a two-path CNN
with the CIFAR-10 dataset encoded in the CIE Lab
color space. Inspired by Deep Roots [15], multi-
path convolutional neural networks [38] and dual path
neural networks [4], we applied the idea of parallel
branches for a better learning of color features, so
we split the first layers of our CNN in two parallel
branches, one dedicated to achromatic data (L) and
the other to chromatic data (AB).

Following this idea, in [27] we showed that each of
the parallel branches learn the features related to the
nature of each cue, and it makes the modified DCNN
more resistant to different types of noise at classifying
plant diseases. Indeed, L filters focus on achromatic
features, like texture, edges, damaged areas, etc. of
the leaf, while the AB filters focus on chromatic fea-
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tures, like lesions, general color of the leaf, etc. The
AB channels should not be further split into separate
channels, because the chromaticity of the pixels is en-
coded in both coordinates simultaneously.

In this paper, we investigate the influence of each
branch in the classification accuracy. For this aim, we
created an Inception V3 [35] based architecture that
has two branches (paths) along the first three convo-
lutional layers. One branch is fed from the L compo-
nent while the other branch is fed from the AB compo-
nents. Furthermore, we test extreme cases by feeding
our DCNN from only one of the two branches, to check
what our network can do with a single cue (chromatic
or achromatic information) and without the other cue.
With this respect, dealing with only the L channel
makes our system comparable with other methods that
purely work on grayscale images.

For this work, we tested our DCNNs on the Plant
Village dataset [14], which contains samples of 12
healthy crops and 26 crop diseases. We also tested our
DCNNSs on the Cropped-PlantDoc dataset [32], which
has 13 plant species and 27 classes of healthy and dis-
eased crops.

The key contributions of this article to image-based
plant leaf disease diagnostics can be summarized as
follows:

e We present a feasible plant leaf image classifica-
tion method based on an efficient DCNN archi-
tecture with separate branches dedicated to chro-
matic and achromatic information.

e We provide detailed performance analysis of sev-
eral variants of our DCNN architecture, tested
on the Plant Village dataset [14] and Cropped-
PlantDoc dataset [32].

e Our DCNN variants have achieved state-of-the-art
plant leaf disease classification with 30% to 50%
fewer filter weights and floating point computa-
tions along the first three convolutional layers.

The remainder of this article is structured as follows:
section II presents and discusses relevant work regard-
ing DCNNs and image-based plant disease diagnostics.
Section IIT presents the proposed method. The results
and discussion are given in sections IV and V. Section
VI summarizes the main conclusions and suggests fu-
ture work.

2 Related Work

In 1980, Fukushima [9] devised a layered artificial neu-
ral network inspired by the visual cortex structure for
image classification. Such network showed that the
first layer contains neurons detecting simpler patterns
with a small receptive field. Deeper layers detect more
complex patterns with wider receptive fields, by com-
posing patters from previous layers.

In 2012, Krizhevsky et al. achieved a major break-
through in the ImageNet Large Scale Visual Recog-
nition Challenge [18] with their AlexNet architecture.

Since then, many other CNN architectures have been
introduced: ZFNet [42], VGG [31], GoogLeNet [34],
ResNet [12], DenseNet [13] and others. Since the num-
ber of layers has increased from 5 to more than 200,
those models are usually referred to as “deep learning”.

A number of machine learning methods have been
proposed specifically for image-based plant disease di-
agnosis [6, 33], including methods specifically designed
for cucumbers [8], bananas [2], cassavas [23], tomatoes
[7, 37, 19] and wheat [16].

Ferrentinos [6] tested 5 existing architectures with
a b8 class image dataset with healthy and sick plants:
AlexNet, AlexNetOWTBn, GoogLeNet, Overfeat and
VGG. Ferrentinos found test accuracies ranging from
99.06% with AlexNet to 99.48% with VGG. Despite
the enormous difference in the number of trainable pa-
rameters in these architectures, the test accuracy was
always above 99%.

Maeda et al. [19] studied the application of 5 exist-
ing architectures, including: AlexNet, GoogleNet, In-
ception V3, ResNet-18 and ResNet-50, to tomato dis-
eases. In this study, test accuracies were also found
to be above 99%. Despite these excellent results, Fer-
rentinos [6] noted that there are problematic situations
for images captured in the field, such as shading and
leaves not centered in the image. When processing
field images in the experiments, it drastically reduces
the classification accuracy.

Chaudhary et al. [3] studied plant disease spot seg-
mentation in YCbCr, HSI and CIE Lab color spaces.
For all color channels, they experimentally found that
feeding their segmentation model from the CIE Lab’s A
channel provides more accurate results than from other
channels. It is important to note that the A channel
is a chromatic channel, and it provided better results
than the achromatic L channel in their work.

Amara et al. [2] applied a plain LeNet architecture
with 60x60 pixels images for banana leaf disease clas-
sification. Interestingly, they achieved an 85.94% test
accuracy with grayscale images and a 92.88% test ac-
curacy with RGB images. Mohanty et al. [20] stud-
ied plant leaf diseases with both grayscale and RGB
color images processed with AlexNet and GoogLeNet
(Inception V1) architectures. Their architectures were
trained with the Plant Village dataset [14]. Their best
results were found with 80% of the image samples al-
located for training while 20% of the samples were al-
located for testing. The only architectural modifica-
tions are the number of classes and the input size set
at 256x256 pixels for GoogleNet. All experiments de-
scribed at [20] done with RGB images achieved higher
accuracies than experiments done with grayscale im-
ages. Results obtained in [2, 20] indicate that chro-
matic information is important for plant leaf disease
classification.

Previous DCNN works from Ferrentinos [6], Maeda
et al. [19], Amara et al. [2] and Mohanty et al. [20]
utilized off-the-shelf architectures with minor changes
in the number of classes and the input layer.
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Geetharamani et al. [10] propose a DCNN with 3
convolutional layers, 2 max pooling layers and 2 dense
layers trained with the Plant Village dataset using data
augmentation. After a number of experiments of the
batch size and data augmentation, they achieved a
96.46% classification accuracy. They distributed the
dataset into 91%, 6% and 3% of the samples for train-
ing, validation and test, respectively.

Toda & Okura’s proposal [36] is based on the In-
ception V3 architecture [35]. The authors adjusted
the last layer of the original network to fit in the 38
classes of the Plant Village dataset. They distributed
the dataset into 60%, 20% and 20% of the samples for
training, validation and test, respectively. Addition-
ally, they performed an ablation study to determine the
optimal number of mixed layers in the inception mod-
ule, successively trimming the layers from the deepest
to the shallowest. They found that with just the 6
former mixed layers, the network provides very similar
accuracy to the original network with 11 mixed layers
(97.14% vs. 97.15%) while saving approximately 3/4 of
the memory for storing the neuron weights (5.17 mil-
lion vs. 21.88 million weights).

Ngugi et al. [21] also worked with the Plant Vil-
lage dataset, but they used transfer learning. Since
we train our networks from scratch, our results cannot
be compared with their results. Transfer learning is a
technique that uses the learned data from a related
domain to improve the learning in a target domain
[39]. We prefer to focus on analyzing the impact of
our architectural modifications and not to care about
the effect of improving the accuracy with the use of pa-
rameters transferred from another domain. Therefore,
comparing our results with other works that do apply
transfer learning is unfair because they take advantage
of pre-trained values. In contrast, we compare our test
accuracies and F1 scores directly with those provided
in [36], [10] and [20] as those papers also use training
from scratch.

Singh et al. [32] created the Cropped-PlantDoc
dataset, which has 13 plant species and 27 classes. Sim-
ilar to the Plant Village dataset, the original PlantDoc
dataset includes pictures of individual leaves. However,
those images also show complex backgrounds, and the
area covered by the target leaves varies, which makes
it a much harder problem to classify than for the Plant
Village images. To address this drawback, the authors
decided to manually crop the image regions containing
target leaves. This provides conveniently framed leaves
while significantly increasing the number of samples
(approximately 9K) because they may extract several
samples from each original PlantDoc image (approxi-
mately 2.6K).

3 Methodology

Figure 1 shows two designs of CNNs that analyze RGB
pictures of plant leaves for plant disease classification.
The design shown on the left corresponds to Toda &
Okura’s proposal, which we have chosen as our refer-
ence baseline model.

The design shown at the right of figure 1 corresponds
to our proposal, which splits the first three convolu-
tional layers of the baseline into two branches, one for
the L channel and another for the AB channels, com-
puted from the input RGB image. Then, the output
from each branch is concatenated to follow the rest of
the network as in the baseline.

Another relevant remark is that we use a hyperpa-
rameter = to determine the distribution of the original
number of filters among the L and AB branches. This
allows us to determine the optimal contribution of each
branch to the classification task. In the original Incep-
tion V3 implementation, the first 3 convolutional layers
have 32, 32 and 64 filters, respectively. For our pro-
posal, we have mainly checked three variants, named
after the percentage of filters dedicated to achromatic
(L) and chromatic (AB) branches: 20%L+80%AB,
50%L+50%AB and 80%L+20%AB. For these variants,
the value of x is set to 13, 32 and 51, respectively. Thus,
the number of L|AB filters in the first two layers will
be 6|26, 16|16 and 26|6, respectively, for each variant.
In the third layer, the number of L|AB filters will be
13|51, 32|32 and 51|13, respectively, for each variant.

To compare our proposal with the baseline in a fair
fashion, we have imposed that the sum of the filters of
the two branches in each layer must be the same as in
the Inception V3 design. However, our filters carry a
fraction of the original number of weights (from 1/3 to

2/3).

2nd 3rd
1st layer

model ciohts layer layer
wels weights  weights
baseline 0.8k 9k 18k
20%L + 80%AB 0.5k 6k 13k
50%L + 50%AB 0.4k 5k 9k
80%L + 20%AB 0.3k 6k 13k

Table 1: Number of weights for each of the first 3 con-
volutional layers, for baseline and our variants.

2nd 3rd
1st layer

model Aobs layer layer

P flops flops
baseline 21M 227TM 453M
20%L + 80%AB 12M 158M 315M
50%L + 50%AB 10M 113M 226 M
80%L + 20%AB 8M 158M 315M

Table 2: Number of required forward pass floating
point operations for each of the first 3 convolutional
layers, for baseline and our variants.
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Figure 1: Graphical representation of worked network architectures: at the left, the Toda & Okura’s single-
branch (baseline) approach fed from an RGB image; at the right, our two-branch approach fed from L+AB
images. Expressions containing = define a varying number of filters in L and AB branches. When /2 is not an

integer number, we use the floor function to round it.

The implementation details of our approach are gen-
erally based on [36] which is Inception V3 based (see
figure 1). Each convolutional layer is composed by a
2D convolution, batch normalization and a ReLU as
the activation function. All convolutional filters from
Convl to Convb are 3 x 3 except for Conv4, which is
1x 1. In Convl, there is a stride of 2. All convolutional
layers from Convl to Convbh do not have padding ex-
cept for Conv4 that is zeroed padded by 1px. We do
not use data augmentation as we study the net effect
of the proposed architecture (L/AB separate branches)
on the accuracy, beyond extra refinements (data aug-
mentation, transfer learning) that may lead to some
degree of improvement but not due to the proposed
architecture. The training data is shuffled before each
epoch. The optimization method is the stochastic gra-
dient descent. The loss function is the categorical cross
entropy function. The batch size is 32. The test accu-
racy is obtained with the parameters from the epoch
with the highest validation accuracy. All models have
been trained from scratch without transfer learning.

All experiments were implemented with K-CAT [28]
and Keras [5] on top of Tensorflow 2 [1], with various

underlying hardware configurations including NVIDIA
1070, 1080, K80, T4 and V100 video cards.

For the Plant Village dataset, we trained all DCNNs
for 30 epochs with a constant learning rate of 0.01.
We split the Plant Village Dataset into 60% of the
samples for training, 20% for validation and 20% for
testing. After a random split of the dataset into the
training, validation and testing subsets, this splitting
will be used in all experiments, to ensure that results
from different experiments are not affected by the sam-
ple splitting. For this dataset, we weight the loss func-
tion according to the number of samples per class to
give the same relevance to each class. This gives sim-
ilar classification accuracy across all classes. For the
Cropped-PlantDoc dataset, we trained all DCNNs for
240 epochs starting with a learning rate of 0.01 and de-
caying 1% per epoch. We split the Cropped-PlantDoc
dataset into 65% of the samples for training, 15% for
validation and 20% for testing.

Our source code written for these experiments
and their raw result files are publicly available
at https://github.com/joaopauloschuler/
two-branch-plant-disease/ .
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4 Results

We have assessed the performance of several mod-
els: the original Toda et al. single-branch architec-
ture for RGB images, which we refer as the baseline;
and three variants of our two-branch architecture for
L—AB channels. For these experiments, we computed
the classification accuracy for the testing subset and
the multiclass F1 score [24].

Table 3 collects the results for the Plant Village
dataset. It shows that our two-branch 20%L+80%AB
variant provides both the best test accuracy and F1
score. It renders a modest but clear improvement
(1.11% in accuracy and 0.87% in F1) over the best
pre-existing model, Mohanty’s GoogleLeNet. This
20%L~+80%AB variant is slightly better than the other
two-branch variants (up to 0.4% test accuracy). The
baseline underperforms our worst variant (two-branch
80%L+20%AB) with a gap of almost 2 percentage
points in test accuracy.

The 2 worst models (Mohanty’s AlexNet and Mo-
hanty’s GoogLeNet) are both fed Gray images. The
other RGB-based architectures achieve test accuracies
ranging from 96.46% to 98.37%. In short, we can sort
these results into 3 groups: LAB-fed two-branch mod-
els (highest accuracy), RGB-fed models (middle accu-
racy) and gray-level fed models (lowest accuracy). Our
worst two-branch variant has a 0.71% higher accuracy
and a 0.32 higher F1 score than the best performing
RGB implementation.

We have also tested our DCNNs on the Cropped-
PlantDoc dataset [32]. On this dataset, we reproduced
the experiment from Toda et al. in regards to trim-
ming the number of Inception V3 mixed layers using
our 20%L+480%AB variant. Table 4 shows the obtained
results. In this experiment, we came to the same con-
clusion that the ideal number of mixed layers is 6.

Once we decided to use just 6 mixed layers, we
trained all our variants on the Cropped-PlantDoc
dataset from scratch again. Our next results outper-
formed all previous models from Singh et al., as shown
in table 5. It is interesting to note that we have not
used transfer learning while Singh et al. used transfer
learning, but we could not find any other proposal us-
ing this dataset to train from scratch. It is also vital to
note that our variants have less than 10% of the train-
able parameters used by Singh et al.’s best model while
exceeding its test accuracy by more than 6 percentage
points.

In table 5, we have also included two extreme vari-
ants of our model: 0%L + 100%AB and 100%L +
0%AB. In those variants, the DCNN is fed pure chro-
matic or achromatic information; hence, the DCNN
operates with a single branch. The test accuracy from
these experiments indicates that color is more impor-
tant than gray-level information for classifying samples
from this dataset. However, achromatic information
also plays a role in plant disease classification since our
best result has been obtained with a combination of
both image cues in the same proportion.

5 Discussion

Typical first layer filters of DCNNs specialize in gray
level features (Gabor-like filters) or in color-opponent
filters, as in [18] and [42]. In our design, our L fil-
ters only need one single channel to learn the spatial
patterns defined by the gray-level component. In ad-
dition, RGB filters replicate the same weights in their
three channels to represent those gray-level patterns.
Hence, L filters save 2/3 of the weights used by RGB
filters. Similarly, for the case of color-opponent filters,
our AB filters learn them using only two chromatic
channels while regular RGB filters employ three chan-
nels for the same task. Therefore, AB filters save 1/3 of
the weights. In total, our design saves from 1/3 to 1/2
of the weights in the first three layers. Also, it achieves
similar savings in the computational floating point op-
erations for carrying those convolutions, as shown in
tables 1 and 2.

The results from table 3 show that the two-branch
approach 20%L + 80%AB is slightly better than the
classical RGB single-branch approach. This indicates
that separating filters for achromatic-chromatic fea-
tures enhances the classification ability of DCNNs.
However, the difference in classification accuracy with
respect to the baseline architecture is small because
the DCNN optimization procedure is able to decorre-
late the features encoded in the RGB channels. With
a sufficient number of training epochs, an RGB single-
branch DCNN will identify filters sensitive to lightness
(Gabor-like grayscale filters) and other filters sensi-
tive to color contrasts (see examples of RGB filters in
[18] and [42]). Nevertheless, our two-branch method-
ology obtains similar accuracy with 30% to 50% fewer
filter weights and floating point operations along the
first 3 convolutional layers. This proves that the extra
weights encoded in the first three layers of the RGB
single-branch approach are redundant. All grayscale
experiments have lower classification accuracy than
their RGB counterparts, corroborating that chromatic
information is important for plant leaf disease identifi-
cation.

The results in table 4 show that a trimmed version
of Inception V3, with less than 25% of the original pa-
rameters (5 million vs. 22 million), is capable of per-
forming significantly better (5% in test accuracy) than
the full-fledged version. We think that the extra num-
ber of parameters may become a drawback for training
due to overfitting.

Finally, table 5 corroborates the advantage of our
proposal. The results of these experiments show more
significant differences than the results in table 3 be-
cause most of the methods obtained truly high test ac-
curacy on the Plant Village dataset, leaving little room
for improvement. Since Cropped-PlantDoc dataset is
much more difficult to classify, our simple but effective
methodology shows its advantage over single-branch
RGB based approaches.
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author architecture color space parameters accuracy F1
Schuler 20%L + 80%AB L—AB 5M  99.48% 0.9923
Schuler 50%L + 50%AB L—AB 5M  99.11%  0.9866
Schuler 80%L + 20%AB L—AB 5M  99.08%  0.9867
Mohanty [20] GoogLeNet RGB 5M  98.37%  0.9836
Mohanty [20] AlexNet RGB 60M  97.82%  0.9782
Toda [36] Inception V3 RGB 5M  97.15%  0.9720
Geetharamani [10] 9 layers CNN RGB 02M  96.46%  0.9815
Mohanty [20] GoogLeNet Gray 5M  96.21%  0.9621
Mohanty [20] AlexNet Gray 60M  94.52%  0.9449

Table 3: Test accuracy and F1 score of several DCNN models on Plant Village dataset classification. The
results extracted from other papers are the ones obtained without transfer learning (not their best ones), for a
fair model comparison with our results, since we do not use transfer learning.

. mixed max. val. test

architecture color space

layers accuracy accuracy
20%L + 80%AB L—AB 1 74.12% 72.50%
20%L + 80%AB L—AB 2 77.27% 76.97%
20%L + 80%AB L—AB 4 77.19% 74.68%
20%L + 80%AB L—AB 6 78.77% 77.08%
20%L + 80%AB L—AB 8 77.12% 73.90%
20%L + 80%AB L—AB 10 75.62% 73.84%
20%L + 80%AB L—AB 11 73.14% 74.23%

Table 4: Max validation and test accuracies trimming the number of mixed layers, trained on Cropped-PlantDoc

dataset.
author architecture color space parameters accuracy F1
Schuler 0%L + 100%AB L—AB 5M 71.55%  0.71
Schuler 20%L + 80%AB L—AB 5M 76.58%  0.76
Schuler 50%L + 50%AB L—AB 5M 76.91% 0.76
Schuler 80%L + 20%AB L—AB 5M 75.85%  0.75
Schuler 100%L + 0%AB L—AB 5M 64.67%  0.66
Singh InceptionResNet V2 RGB 55M 70.53%  0.70
Singh InceptionV3 RGB 22M  62.06% 0.61
Singh VGG16 RGB 138M 60.41%  0.60

Table 5: Test accuracy and F1 score with the Cropped-PlantDoc dataset.

6 Conclusion

In this paper, we proposed a two-branch DCNN for
plant disease classification, where the first three con-
volutional layers specialize in learning chromatic and
achromatic features from the CIE Lab color space.

The experiments conducted empirically prove that
our approach can perform better than the classic one-
branch RGB images fed DCNN while saving a portion
of learnable parameters and floating point operations,
reducing the numbers from 1/3 to 1/2 in those initial
three layers. This is feasible because the RGB channels
are highly correlated; hence, working in a decorrelated
color space avoids redundant filter weights.

With regard to the optimal distribution of filters
among achromatic and chromatic branches for plant
disease classification, our experiments show that ap-
proximately 50% to 80% of the filters should enter the
chromatic branch. This clearly indicates that color is
important for this task.

In this work, we propose an optimization along the

first 3 convolutional layers only. As a next step, we
alm to combine the optimization presented in this pa-
per with optimizations done in deeper network layers
[26, 29] using the worked datasets and other datasets
commonly found in the deep learning literature.
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