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Abstract

In modern applications, large graphs are usually applied in the simulation and
analysis of large complex systems such as social networks, chemical structures,
computer networks, maps, traffic networks. Therefore, graph mining is also an
interesting subject attracting many researchers. Frequent subgraph mining (FSM)
in a single large graph is one of the most important branches of graph mining, and
FSM is defined as finding all subgraphs in a dataset whose occurrences are greater
than or equal to a given frequency threshold. Among all algorithms for FSM, the
GraMi algorithm is considered the state of the art and many algorithms have been
proposed to improve this algorithm. In 2020, the SoGraMi algorithm was proposed
to optimize the GraMi algorithm and presented an outstanding performance in
terms of runing time and storage space. We propose a new algorithm in this paper
to improve SoGraMi based on connected components, called CCGraMi (Connected
Components GraMi). Our experiments on four real datasets (both directed and
undirected) show that the proposed algorithm can outperform SoGraMi in terms

of running time as well as memory requirements.
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1 Introduction

Large graphs are commonly used in practical applica-
tions such as social network mining [5], decision sup-
port systems [30], web mining [11, 26], map model
analysis [6], consulting systems [25], criminal investi-
gations [5], information retrieval systems, structural
graph clustering [18], etc. Therefore, FSM plays an
important role in research purposes as well as real-
life applications [8, 31]. FSM for a large graph has
attracted many researchers in recent years with many
published studies [1, 10, 17, 23, 24, 29]. Since the graph
is a non-linear structure and the complexity is NP-hard
(nondeterministic polynomial time) [23], FSM has al-
ways been a challenging and interesting research area
that attracts researchers [10, 15, 17, 19, 22, 23].

For a real-life example, a sale company collects and
analysis data on its customers [3] to find frequent cus-
tomer groups to fine-tune its business strategies [22].
The single large graph G in Fig. 1 illustrates the list of
their customers, in which each customer is a node in
the large graph belonging to a group labeled A, B, C,
or D, and the relationship (labeled z, y, z, t or w) of
two customers is indicated by edges of the two those
nodes.

The main task of FSM algorithms is to find a set of
all frequent subgraphs S in a large graph G, these are
all subgraphs whose number of appearances in a large

Figure 1: A large graph G

graph are greater than or equal to a given frequency
threshold. A lot of methods search and count the num-
ber of isomorphisms for subgraph S in the large graph
G. However, almost all the popular FSM approaches
require two computationally expensive phases:

e Generating phase: in this phase, the mining pro-
cess generates candidate subgraphs, and a fre-
quent subgraph with k edges will generate can-
didate subgraphs with (k + 1) edges.

e Testing phase: this phase checks and counts the
isomorphisms of each candidate subgraph, the
mining process determines whether this candidate
is frequent or not. However, in this phase, the
computational cost is significantly high because
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isomorphism processing is an NP-complete (non-
deterministic polynomial) problem [10, 23].

In 2014, the GraMi [10] was proposed as an FSM al-
gorithm from a single large graph. It is based on a novel
approach, only storing the templates of candidates and
searching isomorphisms to mark corresponding values
in the domains of the templates, this approach does
not fully list all of each candidate’s appearances on
the large graph [13]. GraMi had some optimizations
to continuously enhance its performance: (1) unique
labels, push-down pruning, decomposition pruning; (2)
lazy search; (3) automorphisms. And then there are
many methods introduced to improve this algorithm.
ScaleMine algorithm [1] was proposed in 2016 as a par-
allel FSM, and SSIGRAM algorithm [24] was intro-
duced in 2018 based on a new parallel approach using
Spark. The two algorithms optimize GraMi by mod-
eling distributed systems. In [23], PaGraMi was pro-
posed as a new parallel approach, in which PaGraMi
used multi-threads in a multi-core personal computer.
In 2020, SoGraMi [23] was also developed to decrease
the search space and improve the performance of the
original GraMi.

Although SoGraMi can overcome the weaknesses of
the original GraMi algorithm, this algorithm still has
some disadvantages:

e The running time: because solving isomorphisms
is an NP-complete problem [10, 23], this leads the
time for search isomorphisms is extremely long.

e The memory requirements: the mining process
consumes a lot of memory to store and evaluate,
but the number of candidates is huge [17, 23].

In this paper, based on connected components we
propose two effective strategies, which help to reduce
the running time as well as the memory requirements
and our algorithm improves the performance of the
SoGraMi algorithm [23]. We call this algorithm CC-
GraMi (Connected Components GraMi).

The rest of our paper is organized as follows: Sec-
tion 2 surveys many related works of FSM. In Sec-
tion 3, we present all the concepts and definitions of
our strategies. Section 4 describes our two strategies
and the algorithm in detail. Section 5 shows our ex-
perimental results on four directed/undirected graph
datasets. Section 6 is our conclusion and some direc-
tions for further works.

2 Related Work

Based on gSpan [29] algorithm, GraMi [10] searches for
isomorphisms of a candidate subgraph because gSpan
dramatically reduces the memory requirement com-
pared to previous grow-and-store approaches [16, 29].
The gSpan algorithm constructs a tree graph by using
the DF'S lexical order to represent all patterns, in the
search tree, each node represents a DF'S code, this is a
hierarchical search space, called a DFS code tree [23].

The subgraph with size (k+1) is created by adding an
edge to the subgraph with £ edge in the tree, a sub-
graph with size (k + 1) is corresponding to the level
(k4 1) of this tree and these nodes contain the DF'S
code for subgraph k. Instead of retaining all detected
subgraphs, the gSpan algorithm only keeps a list of
each detected subgraph, and then the isomorphisms
searching process is only applied for subgraphs in the
list.

In 2014, the GraMi algorithm [10] was proposed for
mining frequent subgraphs and patterns, it had op-
timizations such as unique labels [9, 23], push-down
pruning [10, 23], decomposition pruning; lazy search;
automorphisms. In which a new candidate will be con-
structed by adding an edge to a frequent subgraph, a
frequent subgraph is a substructure of its generated
candidate subgraphs. Based on minimum image-based
support (MNI) the evaluation process of a candidate
subgraph will stop when this subgraph has enough
valid assignments to determine as frequent and the pro-
cess ignores all remaining values to reduce the running
time.

ScaleMine [1] was proposed in 2016, and SSIGRAM
[24] was proposed in 2018. They were novel parallel
algorithms for FSM in a single large graph in order
to optimize the GraMi algorithm in distributed sys-
tems [28]. In which, the process divides mining tasks
into separate CPU cores [1] or threads on a cluster
[24]. ScaleMine was implemented on the Shaheen II
system (a modest cluster on a high-end Cray XC40 su-
percomputer), while SSIGRAM was run on the Apache
Spark framework. Besides, there are some existing par-
allel approaches [23, 28, 32], such as DistGraph [28],
Pregel-based systems [32], they are too computation-
ally expensive systems and complex to carry out. The
SIGRAM algorithm [16] need to restore all computa-
tional intermediary steps of MIS, but their complexity
is an NP-hard problem [23], therefore this method is
extremely computationally expensive [27]. In a labeled
sparse undirected graph, this algorithm uses mazimum
independent sets (MIS) metrics to mine all frequent
subgraphs.

There are some algorithms which calculate the sup-
port for all mined subgraphs, such as gSpan [29],
GraMi [10], O-FSM [7], ScaleMine [1], and SSIGRAM
[24]. In isomorphism solving, there are several diffi-
culties [7], because a lot of different appearances of
a subgraph (isomorphisms) can overlap [10, 12]. A
process called graph compression used by SumISO [21]
is to group vertices into super vertices, SumISO only
searches isomorphisms on these compressed represen-
tations of the graphs. There is some algorithms’ goal
that finds all frequent patterns by using inexact match-
ing, such as APGM [14], this is an effective algorithm
and it can mine frequent patterns with noise in real-life
applications [5, 14, 20], the VEAM algorithm extends
the APGM algorithm by a definition of approximate
subisomorphism [2].

In 2020, the SoGraMi algorithm [23] was proposed to
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optimize GraMi by a sorting strategy. It sorts all fre-
quent edges in the large graph by their supports; priori-
tizes to extend small frequent edges; in each candidate
subgraph, the process will prioritize to process small
domain edges. This efficient strategy significantly re-
duces the number of generated candidate subgraphs,
the running time, and the memory requirements in
comparison to the original GraMi algorithm. In this
paper, we continue to improve the SoGraMi algorithm
[23] with two proposals based on the definition of con-
nected components.

3 Concepts and Definitions

Definition 1 ([10, 23]). A large graph G = (V, E, L)
consists of a set of nodes V', a set of edges F, and a
function L assigns labels to all the nodes/edges in the
graph G.

Definition 2 ([10, 23]). A graph S = (Vs, Es, Lg) is a
subgraph of G = (V,E,L) if Vs CV,Eg C E; Lg(v) =
L(v),Yv € Vg; Ls((u,v)) = L((u,v)),V(u,v) € Eg.

Definition 3 ([10, 22]). Let S = (Vg,Egs,Ls) be a
subgraph in G = (V, E, L). A subgraph isomorphism I
of S to G is a function f : Vg — V satisfying: Lg(v) =
L(f(v)),Vv € Vs; (f(u), f(v)) € E and Lg((u,v)) =
L((f(u),f(v))),V(u, U) € ES-

To determine whether S is frequent in G or not,
GraMi finds isomorphisms of S in G, evaluates its sup-
port [23] based on the number of these isomorphisms.
The authors define solution [10] as an isomorphism [4]
for a subgraph and a constraint satisfaction problem
(CSP) is represented as a tuple (X, D, C') in which:

e X: an ordered set of variables (corresponding to
nodes v in subgraph 5)

e D: a set of domains corresponding to variables X

e (C: a set of constraints between the variables in
X. A solution for the CSP is an assignment to
the variables in X, such that all constraints in C
are satisfied.

For example, the subgraph S (in Fig. 2) to large
graph G (in Fig. 1) CSP is defined:

{(1)07’01,1}2),

{{Uo» Us, U105 U12}7 {Ul, Ugy UT1, UL3, u15},

{U2,u77U97U147U16}},

{UO 7& (%1 ?é UQ,L(U()) = A,L(Ul) = B7
L(ve) = C, L(vg,v1) = x, L(v1,v2) = y}}.

In the CSP model, for each node v € S correspond-
ing to each wvariable x, € X has a domain D con-
taining nodes u (in G) having the same node label as
v in subgraph S, it means that "u can be assigned
to v”. For example subgraph S (in Fig.2) has three
nodes vg, v; and we; the variable vy has a domain

Variables and
domains
x Vo Vi Vo
uo fIl wi || >ue
s | g
S DG | I | SHg
up |[ui
S | W6

[] WValid assignment >< Invalid assignment

Figure 2: Valid and invalid assignments for subgraph

S

D(vg) = up, us, u10, u12, these nodes u have the same
node label "A” with v, thus these nodes u can be as-
signed to vg.

Definition 4 ([23]). Assignment for a node u (in the
domain D) to a node v (in subgraph S) is valid iff there
exists an isomorphism I of S in large graph G that
corresponding assigns u to v, and invalid otherwise.

The GraMi algorithm uses the minimum image-
based support (MNI) [10] to evaluate each candidate
subgraph whether that candidate is a frequent sub-
graph or not. The MNI support of S in G satisfies a
given frequency threshold 7, s¢(S) > 7, if every vari-
able in X has at least 7 distinct valid assignments.
GraMi only searches for a number of isomorphisms of
subgraph S in the large graph G that is enough to de-
termine whether S is frequent [23], and it ignores all
remaining isomorphisms to reduce the searching time.

Definition 5 ([23]). The support of subgraph S in
large graph G (denoted by sg(S)) is the minimum
number of all distinct valid assignments in the domains
of S.

s¢(S) = min{t|t = |D(v)|,Yv € Vg}

SoGraMi proposes a sorting strategy to optimize
the original GraMi algorithm. SoGraMi sort all fre-
quent edges based on ascending order of their support,
which means that the process prioritizes mining low-
frequency subgraphs first; and in a subgraph, and the
node with a smaller domain will be processed first.
This sorting strategy [23] can significantly reduce the
number of candidate subgraphs, decrease the runtime
and the memory requirements.

For example: In Fig. 2, the domain of vy and v;:

|D(”U0)| = |'LL07 U5, U10, ulg‘ =4

|D(v1)| = |u1, ua, ur1, uis, urs| =5

SoGraMi algorithm sorts the frequent edges list
fEdges (see the detail of fEdges in Section 4.1), there-

fore the edge A ] (smallest domain in the fFEdges

list) will be processed first, and in edge A z B, node
A (smaller domain in this edge) will be processed first.
SoGraMi also searches for MNI support to determine
whether S is frequent [23], and it also ignores all re-
maining isomorphisms to reduce the searching time.

Definition 6 (][23]). A subgraph S is frequent in the
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large graph G if its support is greater than or equal to
a given frequency threshold 7.

For example: valid and invalid assignments for S are
shown in Fig. 2.

sa(S) =

min(|ug, w1z, w1, uisl, [ur, u14])

min(|D(vo)|, |D(v1)],|D(v2)|) =
=min(2,2,2) =2

Because s (S) > 7, S is a frequent subgraph in G.

Remark. In this paper, we choose T = 2 for all our
examples.

Although the performance of SoGraMi significantly
overcomes that of the original GraMi algorithm, it still
needs a lot of runtime and storage because of searching
values in a domain of a candidate subgraph, a node can
combine with all other nodes in this domain to form
isomorphisms. This leads to the long runtime and the
large memory requirements.

In this paper, we continuously optimize our SoGraMi
algorithm by two effective strategies based on con-
nected components and we call it CCGraMi. In the
first strategy, when evaluating a candidate subgraph,
each node in its domain only combines to other nodes
in the same connected component instead of combin-
ing to all available nodes in this domain, which de-
creases the runtime for the searching process (see de-
tail in Subsection 4.1). In the second strategy, if a con-
nected component does not have enough nodes to form
an isomorphism, the process will delete this connected
component to reduce the storage space (see detail in
Subsection 4.2).

4 Proposal Algorithms

4.1 Searching Isomorphisms Based On Connected
Components

In SoGraMi algorithm, after pruning all infrequent
edges in the large graph G (in Fig. 1), we have the
remaining nodes and edges are shown as in Fig. 3.
Because of deleting some nodes/edges, a large graph
can be split into many separated connected compo-
nents. An isomorphism is a connected subgraph, thus
its nodes cannot exist in two or more connected com-
ponents. In the first contribution of CCGraMi, this
algorithm searches and split all nodes in G to sep-
arate connected components, the process for search-
ing isomorphism will determine isomorphisms on each
connected component instead of searching on an entire
large graph.

For example, the remaining nodes/edges in large
graph G are split into five separated connected com-
ponents such as C1, Csy, C3,Cy, and Cs.

In the SoGraMi algorithm, the mining process gets
a frequent edge list fEdge [23] that contains all edges
whose number of appearances is equal to or greater
than a given frequency threshold; sorting this list by

Figure 3: The frequent nodes/edges and five connected
components in large graph G

the support of each edge to decrease the number of
candidate subgraphs.

In Fig. 3, there are three edges in the fFEdges as
follow:

x Yy z

fEdges ={A—-B;B—C;C — D}.

The SoGraMi algorithm has an advantage in com-
parison to the original algorithm GraMi, SoGraMi sorts
and prioritizes the edges with small domains when gen-
erating candidate subgraphs. This sorting strategy [23]
can decrease the number of candidates and reduce the
time to process each candidate. For example, edge

A 2 B has the smallest domain in the fEdges list,
and node A has a smaller domain than node B, thus
node A will be processed first as in Fig. 4.

Nodes and
domains

Vo
uio
u2

:

5%?@@5

\.--

e e Nodes and X e Nodes and
domains domains

Vo \ V2 Vo Vi Vo

S “ha” | SueC [ ug S y w

g {[us] 3 usl | w

[uio] ol | uin | U

| |
A s ‘/R uis | Uie

[] Valid assignment >< Invalid assignment

Figure 4: Some subgraphs’ domains in the SoGraMi
algorithm

Both GraMi and SoGraMi only search isomorphisms
for a subgraph S until they find the MNI support of S
in G that is enough to evaluate S as a frequent sub-
graph, they ignore all remaining isomorphisms to re-
duce the searching time [10, 22]. The domain of wvg
in S3 has four nodes ug, us, w19, and w12, the process
performs sequentially these nodes. There are two iso-
morphisms of S3 as wug, w1, uy and uyo,uy3, u14, there-
fore, nodes ug and uqo are valid assignments, while us
and uyg are invalid assignments for vy. After searching
isomorphism for ug, the mining process cannot search
isomorphism for us and w1 (in connected components
() these steps cost time but they do not get any valid
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assignment. Meanwhile, ui2 and ug are in the same
connected component C; (in Fig. 3), but they are very
far together in the domain to check together.

We propose the first strategy in this paper, because
an isomorphism cannot exist in two different connected
components, we split all nodes in the domain based on
each connected component. For example, when pro-
cessing subgraph Sg in Fig. 5 (this is subgraph S5 in
Fig. 4), all nodes in its domain are split into five corre-
sponding connected components. The mining process
only searches isomorphisms on each connected compo-
nent instead of the entire domain. After finding out
two isomorphisms wug, w1, u7 and wuqo,u13, U4, that is
enough to determine that Sg is frequent, the searching
process will stop to reduce running time.

Nodes and

domains
X Vo Vi
st .
'
us | oug
Cy
ui | un
Cs ws | T~
Nodes and ~
X domains X Nodes and
domains
Vo Vi Vo
- Vo | Vi | V2

¢, |2 [ [
1

Ss X et [y | wy Se ) =
Cs o L] Cy | w
Cs u
A/l\t < = A h HE
& uio up
eee | Cs uis | Ui

[ Valid assignment < Invalid assignment

Figure 5: Some subgraphs’ domains in CCGraMi

4.2 Pruning Subgraphs’ Domains Based On Con-
nected Components

The second contribution in this paper, we propose
another strategy to prune subgraphs’ domains based
on connected components. Any connected component
that does not have enough nodes to form an isomor-
phism will be pruned to reduce the storage space and
the time to search isomorphism on it.

For example, subgraph S; and Sg are the same sub-
graphs (they are S5 in Fig.4 and Sg in Fig. 5), but
Se has four connected components which do not have
enough nodes in the domain to form any isomorphism;
Cy and Cj lack of node with label ”A” and ”"B”; Cy
lacks of node with label "C”; C5 lack of node with
label 7 A”. These connected components cannot form

any isomorphism of A “Blc (for subgraphs S7 and
Sg in Fig. 6), deleting Co, C3,Cy and Cs, we have the
domain as Ss. In that, S7 is a sample for a subgraph’s
domain of the SoGraMi algorithm and Sg is a sample
for the CCGraMi algorithm.

Early pruning all nodes in a domain that cannot form
any isomorphism (it means they cannot be valid assign-
ments), the mining process of CCGraMi can reduce the
storage space as well as the runtime to search isomor-
phism for these nodes.

In the CCGraMi algorithm 1, after getting frequent

Soft Computing Journal
X Nodes and
| Vo Vi V2 |
up ug u

domains
w | w | w
Yl u Se el
S7 5 | U4 7 up | W3 | Wig
Uio | Ui | Uy
up | s | ug
uis | e

Figure 6: Comparision of subgraphs’ domains

Nodes and

X domains
Vo Vi Vo

Algorithm 1 CCGraMi

Input: A graph G and a frequency threshold 7
Output: All subgraphs S in G where s (S) > 7

1: resultList + ()

2: Let fEdges be a set of all frequent edges in G

3: Sort fFEdges in ascending order based on the sup-
port

4: for each edge ed € fFEdges do

: resultList < resultList U SubgraphExtend

(ed,G, T, fEdges)

6: Remove ed from fEdges

7: return resultList

edges list fEdges (Line 2), CCGraMi sort this list
(Line 3), it likely to SoGraMi algorithm. From Line
4 to Line 6, the mining process extends these edges to
form candidate subgraphs by SubgraphExtend() 2
[23].

In the function SubgraphExtend() 2, these are two
phases of the mining process:

e Generating phase: From Line 2 to Line 6, this
function combines each frequent subgraph with an
edge in fFEdge, the new candidate subgraph will
be put into the candidateSet list.

e Testing phase: From Line 7 to Line 9, this function
tests each generated subgraph in candidateSet by
IsFrequent() function 3. If a candidate subgrpah
is determined as frequent, this frequent subgraph
will be extended recursively (Line 9) with all re-
maining edges in fFdges.

Algorithm 2 SubgraphExtend
Input: A subgraph S, alarge graph G, a frequency
threshold 7 and a set of frequent edges fFEdges in G
Output: All frequent subgraphs in G extended
from S
1: SList < S, candidateSet < ()
2: for each edge ed € fFEdges and node v € S do
3: if ed can extend v then
Let ext be an extended subgraph of S by ed
if ext is not already generated then
: candidateSet <+ candidateSet U ext
: for ¢ € candidateSet do
if IsFrequent(c, G, 1, fEdges) then
SList <« SList U SubgraphExtend
(¢, G, T, fEdges)
10: return SList

© X NPT

94
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Algorithm 3 IsFrequent

Input: Subgraph S, large graph G and a frequency threshold 7 and a set of frequent edges fFEdges in G
Output: true if S is a frequent subgraph of G, false otherwise

1: Let ccList be a set of all connected components in fFEdges

2: for each node v with domain D do count + ()
3: if the size of any domain is less than 7 then

4: return false

5: for element u of D do

6: for each connected component cc € ccList and u € cc do
7 if cc does not have enough nodes for S then

8: Remove all node values in cc

9: if the size of any domain is less than 7 then
10: return false
11: if v is already marked then
12: count—+-+
13: else if existing an isomorphism I assign u to v then
14: Mark all nodes of I in corresponding domains
15: count—+-
16: elseRemove u from the domain D
17 if count = 7 then
18: Move to the next node v (Line 2)
19: return false > count < 7 and domain is exhausted

20: return true

In the IsFrequent() function 3, the process iter-
ates all node v in a candidate subgraph S (Line 2);
for each node u in the domain of this subgraph (Line
5), instead of combining this node u with all available
nodes in the domain, our strategy only combine this
node u with the nodes in the same connected compo-
nent (Line 6). Moreover, if any connected component
does not have enough nodes to form isomorphism I to
subgraph S, our second strategy will remove all nodes
in this connected component (from Line 7 to Line 10).

Let N and n be the number of nodes in large graph
G and subgraph S, respectively, the frequency thresh-
old is 7. We denote p; and p. as the possibilities that
a node in the domain of a node is valid in the So-
GraMi and CCGraMi, respectively. In total, the com-
plexity bound of IsFrequent() function 3 in SoGraMi
is O(n.7/ps.N"~1) [10, 23].

In our strategies, let V' be the set of nodes and E
be the set of edges in the large graph G, the well-
known complexity of BFS for getting all connected
components (Line 1 in IsFrequent() function 3) is
O(|E| + |V|). Because of early deleting node values in
the domain, this leads to the smaller domain, thus find-
ing 7 valid assignments will be faster and it increases
the possibility that p. is greater than p.

Moreover, N is the number of all the nodes in
the large graph G, but in CCGraMi, N will be split
to k connected components. It means that N =
No + Ny + -+ + Ni—1. In total, the complexity
bound of IsFrequent() function 3 in CCGraMi is
OMn.7/pe-(NJ '+ Ny '+ -+ N7 ). We have that:

(1)
(2)

Pe = Ps

N (Vg NPT N

according to the property of polynomial expansion.

Based on Eq. 1 and Eq. 2: O(n.7/ps.N"71) >
OMn.T/pe-(NJ 4+ N1+ + N7 )), in the worst
case, if k =1 (there is only one connected component
in the large graph G), the complexity of the two algo-
rithms is equal.

5 Experimental Evaluation

In this section, we implement and compare the per-
formances of GraMi, SoGraMi, and the new algorithm
CCGraMi. All our experiments were conducted with
the Java SE Development Kit 8, a system with Win-
dows 10, using an Intel Core i5, 4 threads, 3.2GHz
CPU, equipped with 4GB RAM. We compare three
algorithms on criteria: runtime and memory require-
ments, on four datasets (both directed and undirected),
our new algorithm CCGraMi shows that it can over-
come the two previous algorithms.

We recorded the all results on four datasets (Tab. 1):

e MiCo: This is a large size undirected graph which
contains 100,000 nodes and over one million edges.
It describes Microsoft’s co-author information, in
which the nodes are the authors and their labels
are the areas of interest, each edge in this graph
represents the collaboration among two authors,
the number of co-author papers is the edge label of
two nodes. We use this dataset with the same in-
formation as in the SoGraMi paper to show the ef-
ficiency of our optimizations in the new algorithm
CCGraMi [23].

e Facebook: This dataset is downloaded from http:
//snap.stanford.edu/data/ and it is an undi-
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Table 1: The features of four datasets

Dataset Type Nodes Node labels Edges Edge labels
MiCo Undirected 100,000 29 1,080,298 106
Facebook Undirected 4,389 20 88,235 36
p2p-Gnutella09 Directed 8,114 25 26,013 40
CiteSeer Directed 3,312 6 4,732 101

rected dataset consisting of 4,389 nodes and 88,235
edges collected via the Facebook application from
survey respondents. We use this dataset with the
same information as in the SoGraMi paper to show
the efficiency of the new algorithm CCGraMi. The
original dataset does not have nodes and edges la-
bels, we added randomly 20 distinct node labels
and 36 distinct edge labels with the ratings in the
SoGraMi paper [23].

e p2p-Gnutella09: This dataset is a medium-size
directed dataset downloaded from http://snap.
stanford.edu/data/. It is a sequence of snap-
shots for the Gnutella peer-to-peer file-sharing
network. There are nine Gnutella network snap-
shots collected in August 2002. In which, the
nodes represent the hosts in the Gnutella net-
work topology, and the connections between the
Gnutella hosts are the edges in this graph. Likely
to Facebook dataset, we add these randomly 25
distinct node labels and 40 distinct edge labels
with the following ratings in Tabs. 2 and 3, re-
spectively.

e CiteSeer: This is a small size directed graph
dataset including 3,312 publications, each publi-
cation is corresponding to a node and 4,732 cita-
tions between the publications (each citation cor-
responds to an edge). Each node has a label that
presents a field of Computer Science and each edge
has a label (from 0 to 100), this edge label is the
similarity between two publications, in which the
smaller the label, the higher the degree of similar-
ity. Likely to MiCo and Facebook datasets, we use
the CiteSeer dataset with the same information as
in the SoGraMi paper to show the efficiency of the
new algorithm CCGraMi [23].

Using these four datasets with undirected and di-
rected graphs, we use different frequency thresholds 7
to demonstrate that our new algorithm has outstand-
ing performance in comparison to GraMi and SoGraMi
algorithms, and we try to reduce the frequency thresh-
olds 7 until our personal computer cannot execute it
any more.

First, we record and compare the runtime of three al-
gorithms in all four datasets. In all datasets, the lower
the threshold, the better the CCGraMi algorithm is
in comparison to the two previous algorithms. More-
over, CCGraMi always crashes at lower thresholds in
comparison to GraMi and SoGraMi.

The MiCo dataset is a large undirected dataset (in
Fig. 7), because of the computing power and storage
capacity of the computer, we only take the tests at
high thresholds in our experiments. Our experiments
did not complete at 7 = 9, 200 because of exceeding the
internal memory. At the lowest threshold 7 = 9,250,
CCGraMi can reduce the runtime to 75.5% in compar-
ison to that of SoGraMi, and 21.7% to original GraMi.
All three algorithms crash at the threshold 7 = 9200.

MiCo dataset
==@==GraMi =ll=SoGraMi === CCGraMi
6,000
N °
+ 5,000
% //—
£ 4,000
2 /
Z 3,000 /
2 2,000 /
& 1,000 Vl@i
0 r : . . .

9650 9550 9450

Support threshold T

9350 9250

Figure 7: Running time for MiCo dataset

With the Facebook dataset, a medium undirected
dataset (in Fig. 8), the mining process can implement
at low thresholds. CCGraMi can reduce the runtime
to 87.2% of that of SoGraMi, and 56.5% of that of the
original GraMi at 7 = 125. At 7 = 120, CCGraMi’s
experiment can be implemented with 348.322 seconds,
SoGraMi needs 404.538 seconds, while GraMi crashes
because it exceeds the available memory.

Facebook dataset
=4—GraMi =l=SoGraMi === CCGraMi
500
2 400 /.7
£ /
g 300 A
£
= 200
E
= 100
0
140 135 130 125 120
Support threshold T

Figure 8: Running time for Facebook dataset

With the p2p-Gnutella09 dataset, this is a medium-
directed dataset in Fig. 9. Our proposed algorithm
shows that the running time at 7 = 40 can be decreased
to 85.0% that of the SoGraMi, to 71.9% of the origi-
nal GraMi. At 7 = 35, CCGraMi still runs and takes
442.531 seconds (82.9% in comparison to SoGraMi),
SoGraMi costs 535.532 seconds, while GraMi is out of
available memory at this threshold.
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Table 2: The labels of nodes and their ratings
Labels of nodes 1 2 3 4 5 6 7 8 9 10 11 12 13
Rating (%) 20 15 10 75 6.5 6 4 35 3 25 25 25 2
Labels of nodes 14 15 16 17 18 19 20 21 22 23 24 25 -
Rating (%) 2 2 2 15 15 15 1 1 1 05 05 05 -
Table 3: The labels of edges and their ratings
Labels of edges 1 2 3 4 5 6 7 8 9 0 11 12 13 14
Rating (%) 22 13 10 8 7 5 3 25 25 25 2 1.8 1.6 1.2
Labels of edges 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Rating (%) 1.2 1.1 1.1 1.1 1 1 1 1 09 09 09 09 08 038
Labels of edges 29 30 31 32 33 34 35 36 37 38 39 40 - -
Rating (%) 08 07 06 06 03 03 02 02 02 01 01 01 - -
p2p-Gnutella09 dataset small, the magnitude of our improvements (in Fig. 11)
—¢—GraMi —@=S0GraMi —#—CCGraMi is not well illustrated. CCGraMi only reduces the
600 memory requirements to 95.3% compared with So-
g 500 o —= GraMi, and 92.8% of that is needed for GraMi at the
§ 400 7 last threshold 7 = 9,250, and all the versions of algo-
£ 3001 rithms crash at 7 = 9, 200.
E 200
= 100 MiCo dataset
0 55 50 45 40 35 =¢—GraMi =li=SoGraMi ==—CCGraMi
Support threshold T 480
470 —
Figure 9: Running time for p2p-Gnutella09 dataset §460 P— A _
2 450
2440 M—— L
g 430 _ . N £ —A
With the CiteSeer dataset in Fig. 10, this is a small = 420 — —
size directed dataset. Our proposed CCGraMi shows j;g

that the running time can be decreased to 78.3% that
of the SoGraMi, to 66.7% of the original GraMi at the
threshold 7 = 12. At 7 = 11, CCGraMi still runs
and takes 490.653 seconds (77.6% in comparison to So-
GraMi), SoGraMi costs 631.785 seconds, while GraMi
is out of available memory at this threshold.

CiteSeer dataset

=4=—GraMi =fll=SoGraMi === CCGraMi

~
o
)

600 A

A
% 500 e
g 400 —
=300
B
E 200 -
= 100

0

15 14 13

Support threshold T

12 11

Figure 10: Running time for CiteSeer dataset

Finally, we record and compare the memory require-
ments for the three algorithms GraMi, SoGraMi, and
CCGraMi. Because CCGraMi prunes the domain of
each candidate subgraph based on connected compo-
nents which cannot form any isomorphism for this can-
didate, the memory requirement is also significantly
reduced.

For the MiCo dataset, because the numbers are

9650 9550 9450

Support threshold T

9350 9250

Figure 11: Memory requirements for MiCo dataset

For the medium undirected Facebook dataset (in
Fig. 12), there are many candidates and our results
show that the improvement of CCGraMi is significant.
The memory requirement of the new algorithm can be
reduced to 72.1% that of the SoGraMi, and to 39.1%
of the original GraMi at the threshold 7 = 120. At the
last threshold 7 = 120, the GraMi algorithm crashes
because it exceeds the available memory, CCGraMi can
reduce the memory requirements to 71.6% compared to
SoGraMi, which only needs 478.402 MB, and SoGraMi
needs 667.515 MB.

On the medium-size dataset p2p-Gnutella09, this is a
directed dataset (in Fig. 13), because of a large number
of generated candidate subgraphs, our approach shows
significant results. At 7 = 40, the memory requirement
can be reduced to 56.2% that of the original GraMi and
76.1% that of SoGraMi. At the last threshold 7 = 35,
the original GraMi ran out of the available memory,
SoGraMi needed 703.470 MB, while CCGraMi needs
75.7% of the storage space of SoGraMi, it only con-
sumed 679.192 MB.

On the CiteSeer dataset, the memory reductions are
more significantly at the lower thresholds 7 (in Fig. 14).
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Facebook dataset
==9==GraMi «ll=SoGraMi === CCGraMi
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Figure 12: Memory requirements for Facebook dataset

p2p-Gnutella09 dataset
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Figure 13: Memory requirements for p2p-Gnutella09
dataset

With 7 = 12, CCGraMi only consumes 82.1% and
68.1% in comparison to memory requirements of So-
GraMi and GraMi. Especially, at the threshold 7 = 11,
the original algorithm GraMi crashed because of ex-
ceeding available memory but SoGraMi and CCGraMi
still worked, our new algorithm reduced the memory
to 81.1% in comparison to that of SoGraMi, SoGraMi
consumed 959.834 MB, CCGraMi only needed 778.652
MB.

CiteSeer dataset
=4—GraMi =fll=SoGraMi === CCGraMi
1,200
_ 1,000
-]
= 800 —
600 -
=]
§ 400
200
0 ; ; ; ;
15 14 13 12 11

Support threshold T

Figure 14: Memory requirements for CiteSeer dataset

6 Conclusions and Future Work

In this paper, we have proposed a new algorithm CC-
GraMi with two effective strategies based on connected
components: Searching isomorphisms and Pruning
subgraphs’ domains. Our experiments on four real
datasets (both directed and undirected graphs) showed
that the proposed algorithm CCGraMi has good re-
sults compared to the original algorithm GraMi and
optimized algorithm SoGraMi in terms of running time

and memory requirements.

In the future, we will continue to research new meth-
ods based on connected components such as parallel
processing on each connected component, arranging
connected components by size to prioritize the process-
ing of small-sized connected components to decrease
storage space during the mining process, and combin-
ing high-powered computer systems to be able to mine
larger graphs with smaller frequency thresholds.
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