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Abstract: This research represents a detailed insight into the modern and popular hybridization of deterministic chaotic 
dynamics and evolutionary computation. It is aimed at the influence of chaotic sequences on the performance of four 
selected Differential Evolution (DE) variants. The variants of interest were: original DE/Rand/1/ and DE/Best/1/ 
mutation schemes, simple parameter adaptive jDE, and the recent state of the art version SHADE. Experiments are 
focused on the extensive investigation of the different randomization schemes for the selection of individuals in DE 
algorithm driven by the nine different two-dimensional discrete deterministic chaotic systems, as the chaotic pseudo-
random number generators. The performances of DE variants and their chaotic/non-chaotic versions are recorded in the 
one-dimensional settings of 10D and 15 test functions from the CEC 2015 benchmark, further statistically analyzed. 
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1   Introduction 
This research deals with the mutual intersection of the two computational intelligence fields, which are the complex 
sequencing and dynamics given by the selected chaotic systems, and evolutionary computation techniques (ECT’s). 
Together with this persistent development of metaheuristics algorithms, chaos with its properties like ergodicity, 
stochasticity, self-similarity, and density of periodic orbits became very popular and modern tool for improving the 
performance of various ECT’s. The metaheuristics algorithm of the interest here is Differential Evolution (DE) [1]. 
     Since the key operation in metaheuristic algorithms is the randomness, recent research in chaotic approach for 
metaheuristics mostly uses straightforwardly various chaotic maps in the place of pseudo-random number generators 
(PRNG). The original chaos-based approach is tightly connected with the importance of randomization within heuristics 
as compensation of a limited amount of search moves. This idea has been carried out in several papers describing different 
techniques to modify the randomization process [2], as well as the influence of randomization operations to parameter 
adaptation was profoundly experimentally tested in [3]. 
     The original concept of embedding chaotic dynamics into the evolutionary/swarm algorithms as chaotic pseudo-
random number generator (CPRNG) is given in [4]. Firstly, the PSO algorithm with elements of chaos was introduced as 
CPSO [5], followed by the initial testing of chaos embedded DE [6], DE with chaotic mutation factor (SACDE) [7], and 
with the deterministic chaos for the initialization (CIDE algorithm) [8]. Original inertia weight based PSO strategy driven 
by CPRNGs was also profoundly investigated [9]. Besides the continuous space domain, chaos-driven metaheuristic 
proved to be successful also in the discrete domain [10], [11]. Recently the chaos driven heuristic concept has been utilized 
in several swarm-based algorithms [12], [13], as well as many applications with DE [14], [15]. 
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     The focus of this research is the deeper insight into the population dynamics of the selected DE variants when the 
directly embedded CPRNG is driving the indices selection. Currently, DE [1] is a well-known evolutionary computation 
technique for continuous optimization purposes solving many difficult and complex optimization problems. Many DE 
variants have been recently developed with the emphasis on control parameters self-adaptivity. DE has been modified 
and extended several times using new proposals of versions, and the performances of different DE variants have been 
widely studied and compared with other ECT’s. Over recent decades, DE has won most of the evolutionary algorithm 
competitions in the leading scientific conferences [16], as well as being applied to several applications. 
     The organization of this paper is following: Firstly, the motivation for this research is proposed. The next sections are 
focused on the description of the concept of chaos driven DE, and the experiment background. Results and conclusion 
follow afterward. 
 
2   Motivation and Related Works 
Even though the hybridization of chaos and ECT’s is becoming very popular, many research questions remain, as to why 
it works, why it may be beneficial to use the chaotic sequences for pseudo-random numbers driving the selection, 
mutation, crossover or other processes in particular heuristics. This paper aims to help find the way to some answers 
through a detailed performance analysis.  
     This research is an extension and continuation of the previous successful experiment with the single/multi-chaos driven 
PSO [7] and jDE [17], where the positive influence of hidden complex dynamics for the heuristic performance has been 
experimentally shown. This research is also a follow up to experiments with different sampling rates applied to the chaotic 
sequences resulting in keeping, partially/fully removing traces of chaos [18], further it follows findings and conclusions 
from population diversity analyses in chaos driven DE published in [19]. 
     Also, this paper is an extension of the work published in [20]. Here, more detailed numerical results, and graphical 
analyses supporting statements in conclusion section is provided. The motivation and the originality of the presented 
research can be summarized as follows: 

 To present a comprehensive review of the chaos embedded DE, so that the reader can easily navigate between 
different chaotic CPRNGs and different well known DE strategies, and to see the direct comparisons of 
performances and deeper insight into population dynamics.  

 Totally 40 versions of DE algorithm are tested here (4 variants of DE times nine chaotic versions + one original 
nonchaotic). 

 The CEC 15 benchmark test has been utilized here. Previously, only the results for the basic set of test functions 
or CEC 13 test suit have been published. 

 The original strategy DE/Best/ (2) has never been tested with chaotic sequences, and it is presented here in more 
detailed analyses. 

 
3   Differential Evolution 
This section describes the basics of original DE, jDE and SHADE strategies. The original DE [1] has four static control 
parameters – a number of generations G, population size NP, scaling factor F and crossover rate CR. In the evolutionary 
process of original DE, these four parameters remain unchanged and depend on the initial user setting. jDE and SHADE 
algorithms, on the other hand, adapts the F and CR parameters during the evolution. The concept of essential operations 
in all four selected strategies (DE/Rand/1/, DE/Best/1/, jDE and SHADE) is shown in following sections, for a detailed 
description on either original DE refer to [1], for jDE see [21] or for SHADE, please see [16]. 
 

3.1   Original DE Algorithm 

In this research, we have used DE “Rand/1/” (1) and “Best/1/” (2) mutation strategies with the binomial crossover. Firstly, 
the parent selection and detailed operations for mutation strategies are described. 
     The parent indices (vectors) are selected by standard PRNG with uniform distribution. Mutation strategy “rand/1” 
uses three random parent vectors with indexes r1, r2, and r3, where r1 = U[1, NP], r2 = U[1, NP], r3 = U[1, NP] and  
r1 ≠ r2 ≠ r3. Mutated vector vi, G is obtained from three different vectors xr1, xr2, xr3 from current generation G with the 
help of scaling factor F as follows (1): 
 𝒗௜,ீ ൌ  𝒙௥ଵ,ீ ൅ 𝐹൫𝒙௥ଶ,ீ െ 𝒙௥ଷ,ீ൯. (1) 
The mutation strategy “Best/1/” uses only two random parent vectors with indexes r1, and r2, and best individual solution 
in the current generation. The selection respects the very same rules and features as in the previous case. Mutated vector 
vi, G is obtained as follows: 
 𝒗௜,ீ ൌ  𝒙௕௘௦௧,ீ ൅ 𝐹൫𝒙௥ଵ,ீ െ 𝒙௥ଶ,ீ൯. (2) 
The next step is the crossover and selection. The trial vector ui,G which is compared with original vector xi,G is 
completed by crossover operation (3). CR value in original DE algorithm is static. 

 𝑢௝,௜,ீ ൌ ቊ
𝑣௝,௜,ீ if 𝑈ሾ0,1ሿ ൑ CR or 𝑗 ൌ  𝑗௥௔௡ௗ

𝑥௝,௜,ீ otherwise
. (3) 

Where jrand is a randomly selected index of a feature, which has to be updated (jrand = U[1, D]), D is the dimensionality of 
the problem. 
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The vector which will be placed into the next generation G+1 is selected in the selection step. When the objective function 
value of the trial vector ui,G is better than that of the original vector xi,G, the trial vector will be selected for the next 
population. Otherwise, the original will survive (4). 

 𝒙௜,ீାଵ ൌ ቊ
𝒖௜,ீ if 𝑓൫𝒖௜,ீ൯ ൑ 𝑓൫𝒙௜,ீ൯
𝒙௜,ீ otherwise

. (4) 

 

3.2   jDE 

The generated ensemble of two control parameters F and CR is assigned to each i-th individual of the population and 
survives with the solution if an individual is transferred to the new generation. If the newly generated solution is not 
successful, i.e., the trial vector has worse fitness than the compared original active individual; the new (possibly) 
reinitialized control parameters values disappear together with unsuccessful solution. The both aforementioned DE 
control parameters may be randomly mutated with predefined probabilities τ1 and τ2. If the mutation condition happens, 
a new random value of CR ∈ [0, 1] is generated, possibly also a new value of F which is mutated in [Fl , Fu]. These new 
control parameters are after that stored in the new population. Input parameters are typically set to Fl = 0.1, Fu = 0.9,  
τ1 = 0.1, and τ2 = 0.1 as originally given in [21]. 
 

3.3   SHADE 

The mutation strategy used in SHADE is “current-to-pbest/1/” and uses four parent vectors – current i-th vector xi,G, 
vector xpbest,G randomly selected from the NP × p best vectors (regarding objective function value) from current generation 
G. The p value is randomly generated by uniform PRNG U[pmin, 0.2], where pmin = 2/NP. Third parent vector xr1,G is 
randomly selected from the current generation and last parent vector xr2,G is also randomly selected, but from the union 
of current generation G and external archive A. Also, vectors xi,G, xr1,G and xr2,G has to differ, xi,G ≠ xr1,G ≠ xr2,G. The 
mutated vector vi,G is generated by (5). 
 𝒗௜,ீ ൌ  𝒙௜,ீ ൅ 𝐹௜൫𝒙௣௕௘௦௧,ீ െ 𝒙௜,ீ൯ ൅ 𝐹௜൫𝒙௥ଵ,ீ െ 𝒙௥ଶ,ீ൯. (5) 
The i-th scaling factor Fi is generated from a Cauchy distribution with the location parameter MF,r.  SHADE algorithm 
uses the very same crossover (3) and elitism schemes (4) as canonical DE with following differences. CR value is not 
static, CRi is generated from a normal distribution with a mean parameter value MCR,r And the elitism process uses the 
historical archive. For the archive and historical memories updates, details about the parameters MF,r and MCR,r due, to the 
limited space here, please see [16]. 
 
4   DE with Discrete Chaotic System as Driving CPRNG 
The general idea of CPRNG is to replace the default PRNG with the chaotic system. As the chaotic system is a set of 
equations with a static start position (See Tab. 1), we created a random start position of the system, to have different start 
position for different experiments. Thus we are utilizing the typical feature of chaotic systems, which is extreme sensitivity 
to the initial conditions, popularly known as “butterfly effect.” This random position is initialized with the default PRNG, 
as a one-off randomizer. Once the start position of the chaotic system has been obtained, the system generates the next 
sequence using its current position. Used approach is based on the following definition (6), where the rndreal represents 
the normalized pseudo-random value from the typical range of 0 - 1, rndChaos is the current output iteration of the chaotic 
map (x-axis), and maxval is the maximum value from generated chaotic series. This approach is causing so-called folding 
of the attractor around y-axis. 

 𝑟𝑛𝑑𝑟𝑒𝑎𝑙 ൌ  ቚ
௥௡ௗ஼௛௔௢௦

௠௔௫௩௔௟
ቚ. (6) 

Following nine well known and frequently utilized discrete dissipative chaotic maps were used as the CPRNGs for all 
four DE strategies. With the settings as in Tab. 1, systems exhibit typical chaotic behavior [22]. Also, Fig. 1 shows the 
short chaotic sequences for all nine maps. These plots support the claims that due to the presence of self-similar chaotic 
sequences (see either significant sequencing and periodicity, or the patterns of fractals/self-similarity), the heuristic is 
forced to neighborhood-based selection (or alternative communication in swarms). 
 
5   Results 
For the performance comparisons in this research, the CEC 15 benchmark suite [23] was selected. The dimension D was 
set to 10. Every instance was repeated 51 times with the maximum number of objective function evaluations set to 
100 000, i.e. (10,000 × D). The results were recorded for all tested algorithm – four original DE strategies and their nine 
versions embedded with different CPRNGs. All strategies/versions used the same set of control parameters: population 
size NP = 50 and initial settings F = 0.5, CR = 0.8 (only original DE); internal SHADE variants parameter H = 20. 
Experiments were performed in the environment of Java; non-chaotic DE, therefore, has used the built-in Java linear 
congruential pseudorandom number generator representing traditional pseudorandom number generator in comparisons. 
     The simple statistical comparisons in comprehensive tables containing minimum results are given in Tables 2 - 5. Due 
to the limited space here, the numerical comparison of mean (median) values is not present here. Instead, the data in 
Tables 2 - 5 are supported by the rankings of the algorithms depicted in Fig. 2 based on the Friedman test with Nemenyi 
post hoc test calculated on the 51 runs and 15 functions of CEC2015 benchmark in 10D. The dashed line in Fig. 2 
represents the Nemenyi critical distance. 
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     Furthermore, boxplots diagrams for selected test functions are depicted in Figures 3 - 6. Those Figures, as well as 
Tables 2 - 5 covers all four strategies (DE/Rand/1/, DE/Best/1/, jDE and SHADE), and their ten versions (one original 
and nine chaotic). Detailed results discussion is in the next section. 
 

 

 

 

Figure 1: Chaotic sequences normalized to the typical range of 0 - 1 for CPRNG; Arnold Cat map (upper left), Burgers 
Map (upper middle), and so on for the other maps (Delayed Logistic, Dissipative, Henon, Ikeda, Lozi, Sinai, 
Tinkerbell). 
 

Table 1: Definition of chaotic systems used as CPRNGs 

Chaotic system Notation Parameters 
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Figure 2: Ranking of algorithms: DE/Rand/ versions (upper left); DE/Best/ (upper right), jDE (bottom left); SHADE 
(bottom right). 
 
 

Table 2: The best (minimum found) results for DERand and C_DE; CEC 2015 Benchmark set, 10D, 51 runs 

f/system DERand 
Arnold 
C_DE 

Burgers 
C_DE 

DeLo 
C_DE 

Dissipative 
C_DE 

Henon 
C_DE 

Ikeda 
C_DE 

Lozi 
C_DE 

Sinai 
C_DE 

Tinkerbell 
C_DE 

1 6.82⋅10-7 0 97.8299 0.01533 0 0 1.00⋅10-10 0 0 100.265 
2 0 0 0 0 0 0 0 0 0 0 
3 19.8787 0 19.7117 0 20.0688 11.1445 0 4.82⋅10-8 1.04⋅10-7 0 
4 16.5301 3.41858 1.98996 1.98992 1.98992 2.14⋅10-3 1.9899 1.9899 1.5985 0.9950 
5 815.004 35.1138 10.1824 0.2498 3.5399 0.3747 3.6647 3.6648 18.597 3.3525 
6 0.6137 0 1.20682 0.2081 0 0 0 0 0 0.9950 
7 0.2617 1.0⋅10-10 0.02687 0 0 0 7.40⋅10-3 1.00⋅10-10 7.41⋅10-3 0 
8 0.3088 2.18⋅10-6 9.68⋅10-4 9.38⋅10-4 6.30⋅10-5 7.34⋅10-7 3.56⋅10-6 7.90⋅10-5 9.27⋅10-7 4.25⋅10-3 
9 100.195 100.142 100.140 100.069 100.129 100.103 100.117 100.109 100.087 100.138 
10 216.746 216.537 216.728 216.538 216.537 216.537 216.537 216.537 216.537 211.168 
11 200.542 0.9309 1.87032 0.3397 0.7976 0.8104 0.6809 0.8940 0.9886 0.7443 
12 101.786 101.087 100.881 100.696 100.671 101.081 100.756 100.569 101.042 100.519 
13 31.0225 27.2289 27.2325 22.7848 25.9002 24.6357 25.2364 25.5163 27.0663 23.8107 
14 4352.12 2935.54 2935.54 100 2935.54 100 100 2935.54 2935.54 100 
15 100 100 100 100 100 100 100 100 100 100 

 
Table 3: The best (minimum found) results for DEBest and C_DE; CEC 2015 Benchmark set, 10D, 51 runs 

f/system DEBest 
Arnold 
C_DE 

Burgers 
C_DE 

DeLo 
C_DE 

Dissipative 
C_DE 

Henon 
C_DE 

Ikeda 
C_DE 

Lozi 
C_DE 

Sinai 
C_DE 

Tinkerbell 
C_DE 

1 0 0 0 0 0 0 0 0 0 0 
2 11119.4 0 0 0 0 0 0 0 0 0 
3 20.174 20.0144 2.04⋅10-5 20.0282 2.5799 20.0478 7.350 0 20.0286 2.0161 
4 18.3524 3.9798 6.2651 5.9698 5.9698 3.9798 5.9698 6.9647 4.9750 1.9899 
5 491.466 6.8359 151.049 122.122 120.13 33.4043 6.8924 15.3694 33.4668 25.2442 
6 388.906 44.9809 13.1426 13.3507 25.8688 17.3305 36.2548 5.3911 14.1578 128.596 
7 2.3578 1.0630 0.2192 0.7505 0.4896 1.0331 0.1390 0.6661 0.1181 0.3245 
8 168.463 0.3260 0.8083 0.6296 0.4801 0.8156 0.4994 0.8325 0.3202 1.0129 
9 100.35 100.222 100.157 100.209 100.156 100.178 100.12 100.109 100.125 100.206 
10 367.638 217.122 204.423 191.54 217.015 198.852 195.978 194.098 195.995 221.519 
11 296.3 7.6740 9.4889 9.5429 2.9227 3.8901 2.4784 4.6306 4.5402 5.50815 
12 103.012 101.375 101.476 101.176 101.041 101.508 101.535 101.368 101.698 101.607 
13 38.1593 26.8363 26.3723 28.115 26.6198 28.361 28.6205 27.9272 21.6638 29.2378 
14 5588.34 100 101.873 104.979 1662.67 100.002 100 100 100 118.161 
15 101.002 100 100 100 100 100 100 100 100 100 
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Table 4: The best (minimum found) results for jDE and C_jDE; CEC 2015 Benchmark set, 10D, 51 runs 

f/system jDE 
Arnold 
C_jDE 

Burgers 
C_jDE 

DeLo 
C_jDE 

Dissipative 
C_jDE 

Henon 
C_jDE 

Ikeda 
C_jDE 

Lozi 
C_jDE 

Sinai 
C_jDE 

Tinkerbell 
C_jDE 

1 9.79⋅10-8 0 7.01⋅10-5 4.92⋅10-7 0 0 0 0 0 3.15⋅10-4 
2 0 0 0 0 0 0 0 0 0 0 
3 19.7916 2.50.10-9 0.1154 5.5140 6.5179 2.39⋅10-4 11.9019 6.4830 3.25⋅10-4 7.3023 
4 4.1515 1.2559 0 0 1.1008 1.2774 1.8199 1.5781 1.1066 1.0075 
5 126.703 37.1301 10.3074 25.7866 37.3398 14.2125 40.4215 33.1746 23.3597 33.8032 
6 6.1719 0 0.002150 0.2081 0 0 0 0 0 0 
7 0.1724 0.03687 0.01968 0.03108 0.04643 0.05496 0.03811 0.04974 0.03340 9.35⋅10-3 
8 0.2298 7.11⋅10-7 6.36⋅10-6 3.69⋅10-6 1.69⋅10-5 9.69⋅10-5 3.29⋅10-6 3.38⋅10-4 3.38⋅10-7 1.30⋅10-4 
9 100.207 100.152 100.154 100.121 100.108 100.134 100.121 100.129 100.126 100.148 
10 218.286 216.537 216.556 216.537 216.537 216.537 216.537 216.537 216.537 216.539 
11 101.593 0.4639 1.6532 1.0906 0.7982 0.9954 0.8272 0.4429 0.5749 1.15227 
12 101.839 101.245 101.308 100.994 100.948 100.928 100.801 101.238 101.067 100.409 
13 27.961 24.0059 21.7485 23.3842 23.8183 23.6141 24.4654 25.8824 23.7317 23.0729 
14 3613.67 2935.54 2935.54 2935.54 2935.54 100 100 2935.54 2935.54 100 
15 100 100 100 100 100 100 100 100 100 100 

 
Table 5: The best (minimum found) results for SHADE and C_SHADE; CEC 2015 Benchmark set, 10D, 51 runs 

f/system SHADE 
Arnold 
C_SHADE

Burgers 
C_SHADE 

DeLo 
C_SHADE

Dissipative 
C_SHADE

Henon 
C_SHADE

Ikeda 
C_SHADE

Lozi 
C_SHADE 

Sinai 
C_SHADE 

Tinkerbell 
C_SHADE 

1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 17.8977 0.5591 1.8283 2.4405 2.0426 2.4463 1.2702 2.3933 2.2275 2.0514 
4 3.2186 1.9906 0.9981 0.9958 1.9914 2.35⋅10-3 0.9964 2.46⋅10-3 0.04048 1.80⋅10-3 
5 83.2657 6.8927 3.7233 1.0436 3.7805 0.5567 1.6673 1.2354 3.7573 1.1339 
6 9.0269 0 0.416286 0 0 0 0 0 0 0 
7 0.2429 0.03910 0.01971 0.03654 0.03797 0.02615 0.03442 0.01782 0.03105 4.24⋅10-3 
8 0.4981 6.41⋅10-4 0.01371 2.98⋅10-6 1.85⋅10-4 9.64⋅10-4 1.85⋅10-3 4.73⋅10-5 1.48⋅10-4 0.09180 
9 100.21 100.124 100.117 100.115 100.123 100.085 100.117 100.122 100.135 100.114 
10 217.657 216.537 100. 216.537 216.537 216.537 216.537 216.537 216.537 216.537 
11 213.029 1.7574 2.2380 2.7001 0.7395 2.13053 2.4767 2.2032 2.2932 2.3281 
12 101.473 100.911 100.886 100.923 100.92 101.095 100.963 100.875 100.881 100.797 
13 28.4103 24.8635 25.2288 24.8443 22.5237 25.9536 22.8663 23.001 23.6385 24.1002 
14 3641.88 100 100 100 100 100 2935.54 100 100 100 
15 100 100 100 100 100 100 100 100 100 100 

 
 

Figure 3: Boxplots for DE/Rand versions and selected functions in 10D, 51 runs; from left: f4, f9 and f13. 
 

Figure 4: Boxplots for DE/Best versions and selected functions in 10D, 51 runs; from left: f4, f9 and f13. 
 

Figure 5: Boxplots for jDE versions and selected functions in 10D, 51 runs; from left: f4, f9 and f13. 
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Figure 6: Boxplots for SHADE versions and selected functions in 10D, 51 runs; from left: f4, f9 and f13. 
 
6   Results Analysis 
The findings can be summarized as: 

 Obtained graphical rankings (see Fig.2) and the min. (best) obtained objective function values given in Tables 2 
- 5, support the claim that all studied four DE strategies are sensitive to the chaotic dynamics driving the selection 
(mutation) process through CPRNG. At the same time, it is clear that (selection of) the best CPRNGs are 
problem-dependent. By using the CPRNG inside the heuristic, its performance is (significantly) different: either 
better or worse against other compared versions. 

 Overall, chaotic versions seem to be very effective regarding finding the min. values of the objective function 
(See Tables 2 - 5 and boxplots depicted in Figures 3 - 6). 

 Regarding the dimension of the problem being solved, based on our previous research, it may be claimed, that 
with the increase of the dimension, the influence of the unconventional randomization is strengthened. Here, we 
have presented only the one case of D = 10, which may be close to the simpler real engineering problems.  

 The statistical performance comparisons (rankings) in Fig. 2 reveal the fact that original full random strategy 
“Rand/1/” seems to be the best choice for the hybridization with chaos. The “Best/1/” strategy shows the possible 
conflict between the attraction to the “best” solution in the population and other indices selected based on the 
chaotic series. The similar effect can be observed from the SHADE variants final rankings (Fig. 5; bottom right), 
where the chaotic sequencing for indices selection may be suppressed by the operations with external archive 
and the structure of “current-to-pbest/1” strategy. The simple parameter adjustment jDE version joining fully 
randomized “Rand/1/” strategy and simple adaptation of control parameters seems to be the conservative choice 
for optimization experiments hybridizing adaptive DE and chaos. Overall, the parameter adaptation is beneficial, 
regarding the improvements in finding the min. values as in Tables 2 - 5. However, it is necessary to keep in 
mind, that inner parameters of the chaotic maps, have not been adjusted during the DE run. 

 Mostly the performance of compared original DE and chaotic DE variants is similar, or in some instances, the 
chaotic versions performed significantly worse. Such a worse performance was repeatedly observed for three 
chaotic maps: Delayed Logistic, Burgers and Tinkerbell. On the other hand, these maps usually secured robust 
progress towards function extreme (local) followed by premature population stagnation phase. The following 
chaotic maps have given the stable performance: Arnold cat, Sinai, Henon, and Ikeda. 

 All discussed findings mentioned above support the theory that unique features of the chaos transformed into the 
sequencing of CPRNG values may increase the diversity of the population in the initial phases of the 
optimization. Further, the chaotic series may create the subpopulations (or inner neighborhood selection 
schemes). Thus, the metaheuristic can benefit from the prolonged exploration, searching within those sub-
populations and quasi-periodic exchanges of information between individuals. 

 
7   Conclusion 
The primary aim of this original work is to provide a more in-depth insight into the inner dynamics of indices selection 
in DE. The focus is to experimentally investigate the influence of different types of unconventional non-random (chaotic) 
sequences to the performance of different classes of DE strategies. 
     The research of randomization issues and insights into the inner dynamic of metaheuristic algorithms was many times 
addressed as essential and beneficial. The results presented here support the approach for multi-chaotic generators [24] 
or ensemble systems, where we can profit from the combined/selective population diversity (i.e., exploration/exploitation) 
tendencies, sequencing-based either stronger or moderate progress towards the function extreme, all given by the smart 
combination of multi-randomization schemes. 
     However, a lot of analyses and different scenarios for the future research are required to support the facts mentioned 
above fully and to provide deeper insight into the metaheuristic dynamics, its ergodicity, complexity, and sensitivity to 
the unconventional randomization for particular processes. 
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