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Abstract
The cooperation between mobile robots is one of the most important topics of
interest to researchers, especially in the many areas in which it can be applied.
Hunting a moving target with random behavior is an application that requires
robust cooperation between several robots in the multi-robot system. This paper
proposed a hybrid formation control for hunting a dynamic target which is based
on wolves’ hunting behavior in order to search and capture the prey quickly and
avoid its escape and Multi Agent Deep Deterministic Policy Gradient (MADDPG)
to plan an optimal accessible path to the desired position. The validity and the
effectiveness of the proposed formation control are demonstrated with simulation
results.
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1 Introduction

Research on formation control of mobile robot hunters
has been studied in industry and academia and ro-
bustly applied to a variety of complex tasks such search
and rescue, military, agriculture, industry [9]; where
this formation control is for chasing and trapping a dy-
namic target which could be another robot or any kind
of targets. In order to perform this hunting process, a
team of cooperated and coordinated mobile robots is
widely used [5]. For example, Hamed recently intro-
duced a hunting strategy using a multi-robot system
[5]. Many researches have been done on hunting with
multi-robot systems problems. Among them, there are
many methods for hunting a target by means of sev-
eral mobile robots that are based on generative ad-
versarial network [1], dynamic prediction [2] and Deep
Reinforcement Learning (DRL) [11, 13]. The nature
inspired methods [4] are effective in chasing a dynamic
target with random behavior in real time in unexpected
environments. Moreover, in the hunting process with
multi-robot systems, the mobile robots must cooperate
and coordinate in order to catch the target as quickly
as possible and prevent it from escaping while avoid-
ing obstacles in the environment. Therefore, a multi
agent nature inspired method should be used with a
combination of a path planning algorithm to reach the
desired hunting position rapidly without colliding with
obstacles. In this paper, we present a new formation
control for chasing and trapping a dynamic target by
means of multi mobile robots based on Wolf Swarm Al-
gorithm [5] and Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) [10]. The use of this multi-robot
cooperation strategy for hunting a dynamic target [5]
is due to its high performance in the hunting process.

In this strategy, distributed robots cooperate and take
turns by analyzing information in real time in order
to encircle the target and reach it quickly. The mo-
bile robot hunters reach the hunting point rapidly and
without colliding with the obstacles in the environment
through MADDPG. Therefore, this algorithm is suit-
able for the path planning problems in real time under
complex environments for multi agents. The simula-
tion results show that the proposed algorithm helps to
hunt a target which behaves with uncertain behavior
in an obstacle-filled environment. The main contribu-
tions of this paper are: First, proposing a robust co-
operation and coordination of multi-robot systems to
plan an optimal, accurate, and accessible path to hunt
dynamic targets in the presence of obstacles. Second,
reducing the resources required for the hunting process
by means of a set of robots in real time and quickly
adapting to changing conditions during hunting. The
rest of this paper is organized as follows: Section 2,
presents an overview of related works. In Section 3,
we summarize the necessary methods needed to create
our work and describe the proposed method. Results
evaluation and analysis are given in Section 4, followed
by the future work and conclusion in Section 5.

2 Related Work

As related work, an improvised multi-robot coopera-
tion strategy for hunting a dynamic target is intro-
duced in [6]. This hunting strategy aims to hunt dy-
namic targets in search spaces that do not contain ob-
stacles, while in this paper obstacles have been taken
into account in addition to developing a hunting behav-
ior of the robots. A multi-agent collaborative hunting
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algorithm based on game theory and Q-learning for
a single escaper is proposed in [14]. The process of
this algorithm is presented as follows: First, a cooper-
ative hunting team is formed, and a cooperative hunt-
ing game model is developed. Second, the trajectory
of the escaper’s restricted T-step cumulative reward
is formed by learning of the escaper’s strategy choice,
and the trajectory is modified to the hunter’s strat-
egy set. Finally, by solving the cooperative hunt game,
the Nash equilibrium solution is discovered, and each
hunter performs the equilibrium strategy to finish the
hunt. In [3], Xiang proposed a fuzzy-based potential
field hierarchical reinforcement learning approach for
target hunting by multi-AUV in 3-D underwater en-
vironments to improve the efficiency of target hunting
and the smoothness of AUV’s trajectory. Kangrui pro-
posed a scenario for multi-UAV in an urban environ-
ment for hunting a target using Deep Reinforcement
Learning [15]. First, they create a multi-UAV hunting
target game model and construct the reward mecha-
nism. Second, they provide an enhanced Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) to
compete against a game AI target. Finally, they cre-
ate a virtual platform based on the Unity3D gaming
engine to replicate the urban battle scenario.

3 Method

3.1 Improvised Multi-Robot Cooperation Strategy
for Hunting a Dynamic Target

This chapter describes the multi-robot cooperation
strategy for hunting a dynamic target [6]. This method
is inspired from wolf hunting behavior. The robots in
the swarm are classified into three classes; the leader,
the followers, and the antagonists. N robots switch
roles based on fitness function ∅(R, T ) where R is the
coordinate of the robot and T is the coordinate of the
target. The closer the robot is to the target the value
of the function becomes larger. The robot becomes a
leader if it has the highest value of Ø. The antagonist
is a robot that follows its own way in order to search
for prey. In the swarm the number of antagonists is an
integer from the interval [(N − 1)/(λ + 1), (N − 1)/λ]
where λ = [1, N/2] is the antagonism proportion fac-
tor. In order to reduce the search area for the target,
the angle between the leader and the reference x axis
is calculated by the equation (1)-(2).
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where β1 and β2 are the seeking factors that are ex-
pressed in the equation (8). The factor ψ is the
amount of the global directions whither the antago-
nist Ra

k searches for the prey, and ϕ is the advancing
direction factor where:
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the antagonist chooses the temporary position with the
highest function value, then this value is compared to
that of the leader. The antagonist becomes the leader
if

∅(Ra
k, T ) > ∅(R1, T )

The rest of the robots are the followers. The follower
has two behaviors and it switches them according to
the distance between it and the leader Dconv. The
distance of convergence Dconv is described as follows:

Dconv=
(

1
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× σ

(5)
Where σ =]0, 1] is the convergence factor. (xs, ys) are
the boundaries of the search space. The follower wolf
behaves with the summoning behavior when the dis-
tance between it and the leader is greater than Dconv.
The follower wolf advances to the leader, according the
equation (6):(
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The deviation factors ε1 and ε2 are random numbers
where 0 < (ε1, ε2) ≤ 1, and i is the iteration index. α is
the advancing vector which is expressed in the equation
(8).
When the distance between the follower robot and

the leader is less than Dconv, this robot encircles the
target. This behavior is called preying behavior. The
update of follower’s position is expressed by the expres-
sion:(Rf
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τ1 and τ2 are the encirclement factors, where 0 ≤
τ1, τ2 ≤ 2–i/max Iteration, and γ is the preying vec-
tor which is expressed in the equation (8). The vectors
α, β and γ are calculated as follows:(
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The scalar S is the step factor where S ∈]0, 1[.
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3.2 Multi-Agent DDPG

Reinforcement learning (RL) is a branch of machine
learning that focuses on making progressive decisions.
The fundamental goal of this strategy is to figure out
how agents should conduct actions in a given envi-
ronment in order to maximize cumulative rewards as
shown in Fig. 1. Markov decision processes (MDP)
are an excellent mathematical model for RL problems,
and a direct learning mechanism proposed to achieve
the goal. In the following learning stage, the agent de-
cides to obtain not only the current remuneration, but
also cumulative remuneration [12]. The agent choses

Figure 1: Structure of agent-environment interaction
in MDP.

an action a at each state s which makes finite pairs of
state and action {(s0, a0), (s1, a1), . . . }.

The return Gtt is the total discounted reward for the
sequence {(s0, a0), (s1, a1), . . . } from time-step t:

Gt((s0, a0), (s1, a1), . . . ) =

∞∑
k=0

γkRt+k (9)

Where Rt is the reward at time-step t and γ is the
discount factor 0 ≤ γ ≤ 1.
The optimal policy π∗ is the policy which maximizes

the expected reward.

π∗ = argmax
π

Eπ[Gt((s0, a0), (s1, a1), . . . )] (10)

Deep Reinforcement Learning (DRL) refers to the com-
bination of Artificial Neural Network (ANN) and Re-
inforcement Learning. This combination allows the
agent to pick an optimal action in a complex and non-
deterministic environment.
MADDPG is an extension of DDPG which is pro-

posed to handle continuous state-action spaces and to
use a centralized planning with a decentralized execu-
tion for each agent [8]. During learning, all agents are
guided by the centralized critic, where there is an entity
that oversees the whole system of agents, instructing
them on how to update their rules based on local infor-
mation and how to teach each agent on local policies
[7].
The agent i trains its centralized critic Qi to mini-

mize the following loss:
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i
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2
]
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yi = ri + γQi
μ′(x′, a′; Θi−

Q ) |a′j=μ′j(o′j) (12)

where μ = {μ1, . . . , μN} is the set of determinis-
tic policies of all agents, x′ = (o′1, . . . , o′N ), μ′ =
{μ′1, . . . , μ′N} is the set of target policies, D is the re-
play memory, and θi−Q is the parameter of the target
Q network for agent i. To update each agent’s actor
parameters, the deterministic policy gradient is used
to maximize J(θiμ) as shown in the equation (13).
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3.3 Hybrid Formation Control (HFC) for multi
hunters

In order to search, track and surround a dynamic target
which moves according to a random behavior within a
search space that contains obstacles, there are many
mobile robots play the role of hunters. Each robot
is made up of sensors that can sense how close it is
to the target without knowing where is its location.
At the beginning of the hunting process, the robots
sense the target and communicate with each other in
order to exchange sensing values between them, and
the robot that senses the most value is the leader, while
the others become followers and antagonists. From this
step, the follower robots head towards the leader, while
the antagonist robots search for prey, and when one
of them becomes the closest, it takes the role of the
leader. The robots follow the short and unobstructed
path while avoiding collision with other robots while
heading to their destination. The set of Robots de-
noted as Rn � {R1, . . . , Rn}, the target T, the NF
followers Rf � {R1, . . . , RNF }, and NA antagonist
Ra � {R1, . . . , RNA}. For the follower in both be-
haviors, its next destination is calculated according to
the given formulas that contain random parameters,
allowing the follower robots to go to other options but
still maintain his main destination. The computation
procedure for each follower can be presented as shown
in Algorithm 1.

Algorithm 1 Follower HFC

1: for f=1:NF do
2: if ||Rf , R1|| > Dconv do
3: Dp = equation (6)
4: end if
5: if ||Rf , R1|| < Dconv do
6: Dp = equation (7)
7: end if
8: if Dp is not accessible do
9: Correct Dp

10: end if
11: Plan path with MADDPG (Rf to Dp)
12: Rf ← Dp
13: Rl ← argmaxR(∅(Rs, T )) where Rs = {Rl, Rf}
14: end for
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Figure 2: Robot Corrects its desired position.

Figure 3: Robot encircles target with the corrected Dp.

Figure 4: Robot anticipates target position with cor-
rected Dp.

In lines (2, 5), the behavior of the follower is selected,
and according to this behavior the desired position Dp
is calculated. There are two cases for a desired destina-
tion when it is calculated, either the desired destination
can be reached or this destination cannot be reached
because of an obstacle. In lines (8, 9), if the desired
position is not accessible, then a corrector corrects the
desired position to make it accessible. The corrector is
an algorithm that selects the closest available position
away from the obstacle and makes it the new desired
destination as shown in Fig. 2. In addition to being
accessible, the corrected desired position helps in en-
circling the target (Fig. 3) or anticipating its position
(Fig. 4). After determining the desired position, the
MADDPG algorithm is used by the robot to reach this
position quickly and without colliding with any obsta-
cle.

Figure 5: Antagonist robot is stuck.

Figure 6: Antagonist robot and target are stuck .

Algorithm 2 Antagonist HFC

1: for f=1:NA do
2: Θ = equation (1); Θ′ = equation (2)

3: for ϕ = ψ×Θ′

2π − l1 : ψ×Θ′

2π + l2 do

4:

(
R̃a

kx, R̃
a
ky

)
= equation (3)

5: if
(
R̃a

kx, R̃
a
ky

)
not accesible do

6: continue
7: end if
8: Plan the path (Ra to R̃a) with MADDPG

9: if ∅(Ra, T ) ≤ ∅(R̃a, T ) do
10: Memorize old Ra

11: Ra ← R̃a

12: break loop
13: else
14: Plan the path (R̃a to Ra) with MADDPG
15: end if
16: end for
17: Rl ← argmaxR(∅(Rs, T )) where Rs = {Rl, Rf}
18: end for

In lines (5,6), the desired position is not corrected
in order to reduce the calculations and execution time.
Therefore, the antagonist robot looks for the next ac-
cessible position according to equation (3).
In some critical situations, i.g., Fig. 5, the antago-

nist is stuck in this narrow path and there are only two
positions accessible (P1 and P2). To prevent this unde-
sired situation, the antagonist memorizes its previous
positions (line 10) and verifies the frequency of its vis-
its to these positions in a short delay. The antagonist
chooses another path if it is stuck even though this new
path leads it away from the target. The other reason to
get a stuck robot is the behavior of the target. If the
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target is stuck regardless of the reason (narrow path
or random velocity) the antagonist would be stuck too
(Fig. 6).
In such situations as shown in Fig. 7, the robot can

reach its destination by following two paths according
to the random parameters used in the control equa-
tions. However the path 1 seems to be the shortest
to the target, the path 2 can be a better choice for
the hunter because this target has unexpected behav-
ior and random velocities.

Figure 7: Robot has two paths to follow towards the
target.

4 Results and Discussion

To verify our proposed method, we perform a simula-
tion of the hunting process using four mobile robots.
We assume the kinematic model of these robots does
not have any constraint. The hunting environment is
two-dimensional space with a size of 20 x 20 and in-
cludes many static obstacles with different sizes that
are randomly placed. The initial position of the four
hunters and the target are randomly generated as
shown in Table 1. Fig. 8 shows the distribution of
hunters and the target within the search space.
The goal of these robots is to find and catch the

target which is moving with random behavior. In ad-
dition to hunting the target, robots have to avoid col-
liding with static obstacles and other robots (dynamic
obstacles).

Table 1: Initial position for the hunters and the target

Robot Position Symbol
Hunter 1 [9.2124, 8.1487] ×
Hunter 2 [11.4781, 16.0214] ×
Hunter 3 [19.7411, 5.8412] ×
Hunter 4 [17.5324, 18.3316] �
Target [14.0012, 10.9896] ∗

The target’s movements are random (see Fig. 9)
where Tx and Ty the coordinates of the target are up-
dated: Tx(i+1) = Tx(i)+ξ1 and Ty(i+1) = Ty(i)+ξ2.
ξ1 and ξ2 are random numbers where –1.5 ≤ (ξ1, ξ1) ≤
1.5. The hunting operation can only be completed with
at least three hunters. The goal is to make the hunter

Figure 8: Initial position of the hunters and the target.

Figure 9: The path of the target during the hunting
process.

Figure 10: The path of each robot and the target.

robots encircle and hunt the target in this aleatory sit-
uation, and make sure that is valid for any other situ-
ation. In Fig. 10, hunters plan an accessible and op-
timal path towards the target while keeping to follow
it wherever it goes. Fig. 11 shows the hunters success-
fully hunt the target at the position [12.2055,12.7532]
and the hunting process is well performed.
Fig. 12 shows the progression of the best cost func-

tion which is the cost function of the leader since it is
the closest robot to the target. The variations in this
function are due to the random behavior of the tar-
get. The hunters are always in movement towards the
target, and that is the reason for the function decreas-
ing, such as from the 1st to the 6th iteration. Oth-
erwise, the function increases when the target moves
away from hunters like the 15th iteration. In the 22th
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Figure 11: The hunters hunt the target.

Figure 12: The cost function progression of the leader.

iteration, the function tends towards 0 which means
the leader reaches that target with other hunters.
Fig. 13-16 show the trajectory for each robot in addi-

tion to the target. Each robot follows an accessible and
secure path towards the target. In this experiment, the
robots do not depend on deviations factors when they
are far from the leader (||Rf , Rl|| >> Dconv ), there-
fore robots go in a straight line and that is introduced
in the path of some robots. The random behavior of
the robot when they are close to the leader helps to
prevent the escape of the target.
The cost function progression of robot 1 is shown in

Fig. 17. However, robot 1 is not always the leader,
it is constantly getting closer to the target. The cost
function progression of robot 1 increases and decreases
in the same way as for the leader.

5 Conclusion and Future Work

This paper presents a novel hybrid formation control
for multi robots in order to hunt a dynamic target
with random behavior without collisions with obstacles
into the environment. This formation control adopts
a hunting strategy in order to catch the prey quickly
and without allowing it to escape. The presence of the
antagonist robot contributes to the re-deployment of
the robots to the location of the prey and prevents the
other robots from gathering in a wrong position. The
use of MADDPG algorithm which is one of the well-
known MARL algorithms helps to reach the desired

Figure 13: The path of robot 1.

Figure 14: The path of robot 2.

Figure 15: The path of robot 3.

Figure 16: The path of robot 4.
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Figure 17: The cost function progression of robot 1.

position quickly and smoothly without collision with
obstacles. The results of the simulation shows that the
proposed hybrid formation control achieves the desired
performance. As future work, multi-dynamic targets
should be taken into account with more robot hunters.
In addition, the search strategy must be developed to
suit prey that moves more quickly than hunters.
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