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Abstract
Although metaheuristic optimization has become a common practice, new bio-
inspired algorithms often suffer from a priori ill reputation. One of the reasons is
a common bad practice in metaheuristic proposals. It is essential to pay atten-
tion to the quality of conducted experiments, especially when comparing several
algorithms among themselves. The comparisons should be fair and unbiased.
This paper points to the importance of proper initial parameter configurations of
the compared algorithms. We highlight the performance differences with several
popular and recommended parameter configurations. Even though the parameter
selection was mostly based on comprehensive tuning experiments, the algorithms’
performance was surprisingly inconsistent, given various parameter settings. Based
on the presented evidence, we conclude that paying attention to the metaheuristic
algorithm’s parameter tuning should be an integral part of the development and
testing processes.
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1 Introduction

The comparison of algorithms is a standard method to
validate new methodologies. Novel optimization meth-
ods use various performance measures to prove their
efficiency. The vast majority of publications use other
algorithms’ results to reveal, what makes the proposed
algorithm exceptional, and why to use it [9].

The problem is that many publications pay insuffi-
cient attention to the fair comparison of the compared
algorithms. New promising metaheuristics are often
compared to decades-old optimizers. Algorithms with
carefully tuned parameters are compared to algorithms
with initial parameter settings from the original pro-
posals. Or the novel proposal compares the algorithm
with data from released publications, but does not con-
sider other parameters, like the computational capabil-
ities of employed CPU, number of iterations, popula-
tion size, or used programming language [15].

A significant number of input variables influence the
results of algorithm comparisons: the dimensionality
of the solved problem, population size, programming
skills, CPU, number of objective function evaluations,
and foremost the parameter settings of the algorithms.
The final interpretation of biased, misadjusted data
might have objectionable meaning.

The No Free Lunch theorem says that no optimiza-
tion algorithm can find the ideal solution to all prob-
lems [16]. However, the theorem may extend even for
the parameter configuration. While one set of parame-
ters may fit the scope of one optimization task, it may
be inapplicable for another [7]. Since metaheuristic al-

gorithms use a wide range of parameters, the users of-
ten employ original parameter configurations proposed
by the authors. However, no one can guarantee the
general applicability of such parameters. On the con-
trary, many initial proposals employ only a small sam-
ple of test problems [12]. Benchmarking competitions
use various recommendations for parameter settings
[11]. While some prefer one set of parameters for the
whole testbed [1], others require parameter tuning for
each issue separately [5].

Naturally, the main focus of metaheuristic proposals
is on the innovative methodologies, not on the estab-
lished algorithms. Yet, despite all of this, the parame-
ter tuning of compared algorithms is often neglected.

This paper shows that the algorithms’ parameter
configuration may significantly affect the final inter-
pretation of the results. We compare four swarm algo-
rithms in the sum of 20 parameter configurations on 30
problems of the IEEE CEC 2017 testbed and evaluate
them for statistical significance.

The paper is structured as follows: Section 2 sum-
marizes the common comparison practice. Section 3
describes the parameter tuning experiment, parameter
configurations selection, the comparison on a bench-
mark testbed, and the results’ winning configurations.
Section 4 investigates the influence of the possible com-
parison interpretations given different parameter con-
figurations. Finally, we conclude the findings and rec-
ommendations for future practice.

 
 

MENDEL — Soft Computing Journal, Volume 26, No.2, December 2020, Brno, Czech RepublicX 

 
 

9

https://doi.org/10.13164/mendel.2020.2.009
ISSN: 1803-3814 (Printed), 2571-3701 (Online)



Table 1: Examined parameter configurations.

Bat Algorithm
Source NP Loudness Pulse rate Alpha Gamma Qmin Qmax Test set

(Faris et al., 2016) [4] 50 0.5 0.5 0 2 BAT 0
(Xue et al., 2015) [17] 50 0.9 0.9 0.99 0.9 0 5 BAT 1
(Xue et al., 2015) [17] 100 0.9 0.9 0.99 0.9 0 5 BAT 2

(Yang, 2010a) [19] 50 1.5 0.5 0 2 BAT 3

Particle Swarm Optimization
Source NP Wmax Wmin vmax

1 C1=C2 Test set
(Faris et al., 2016) [4] 50 0.9 0.2 6 2 PSO 0

(Bergh & Engelbrecht, 2006) [2] 50 0.7298 0.7298 61 1.49618 PSO 1
(Bergh & Engelbrecht, 2006) [2] 20 0.7298 0.7298 61 1.49618 PSO 2

(Harrison et al., 2017) [6] 30 0.5 0.5 61 1.9 PSO 3
(Maca & Pech, 2015) [10] 40 0.9 0.4 95 2 PSO 4

(Bergh & Engelbrecht, 2006) [2] 50 0.7298 0.7298 401 1.49618 PSO 5
(Bergh & Engelbrecht, 2006) [2] 20 0.7298 0.7298 401 1.49618 PSO 6

(Harrison et al., 2017) [6] 30 0.5 0.5 401 1.9 PSO 7

Firefly Algorithm
Source NP Alpha Gamma Beta Lambda Test set

(Faris et al., 2016) [4] 50 0.5 1 0.2 1.0 FFA 0
(Yang, 2008) [18] 50 0.25 1 0.2 1.0 FFA 1
(Yang, 2008) [18] 20 0.25 1 0.2 1.0 FFA 2

(Mo et al., 2013; Yang, 2010b) [13, 20] 50 0.2 1.5 0.2 1.0 FFA 3

Cuckoo Search
Source NP Pa Alpha Test set

(Faris et al., 2016) [4] 50 0.25 0.01 CS 0
(Yang & Deb, 2010) [22] 20 0.25 1 CS 1
(Yang & Deb, 2010) [22] 50 0.25 1 CS 2
(Faris et al., 2016) [4] 20 0.25 0.01 CS 3

2 Common Comparison Practice

When comparing multiple algorithms, the two most
frequent comparison practices distinguish the data col-
lection procedure. While some publications apply al-
ready published results from different sources, others
implement the compared algorithms themselves. Both
approaches provide benefits and disadvantages.

The first approach employs data of the compared
algorithms from available published results. The ad-
vantage is that these results were already approved in
the review process. The researcher does not have to
deal with other algorithms. Moreover, a careful choice
of data source may prevent potential concerns about
the algorithms’ proper implementation. On the other
hand, providing the same conditions as in the original
experiment can get problematic. Some performance
measures may be out of the question – e.g., the execu-
tion time, due to various computational sources. More-
over, since the code source implementations are often

1Since this parameter setting was originally used on uncon-
strained problems, the vmax value was not defined. However, as
the IEEE CEC 2017 benchmark is bound constrained, we chose
the vmax values as follows: vmax=6 as the default value from
the EvoloPy library, and vmax=40 as 20% of the search range,
as recommended by [3].

not provided, the methodology, algorithm’s version, or
the computing machines may be outdated.

The Passing Vehicle Search algorithm’s proposal rep-
resents a beautiful example of good comparison prac-
tice based on collected published data. To provide
a fair and unbiased study, the authors (Savsani and
Savsani) carried out many experiments with varying
parameter settings to deliver similar conditions to dif-
ferent scenarios [14].

The second approach employs data from the re-
searcher’s sources. They implement the algorithms
themselves and can, therefore, provide all experiments
in the same environment. This approach’s benefits en-
sure equal programming skills, possible execution time
measures on the same CPU, and potential employment
of a universal template for all the algorithms. How-
ever, since many algorithms do not publish authentic
source codes but merely pseudocodes, the implementa-
tion might be tricky. This approach also may take con-
siderably more time. Besides the currently developed
algorithm, the researcher deals with other algorithms’
principles and parameter configurations. The final li-
ability is the need for parameter tuning of unfamiliar
algorithms, which is often neglected due to the time
requirements. However, this paper wants to point out
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the importance of this issue and show how the param-
eters may affect the interpretation of the results.

3 Parameter Tuning Experiment Solution

This paper presents a showcase of the parameter tuning
process on four algorithms: the Bat Algorithm (BAT)
[19], the Particle Swarm Optimization (PSO) [8], the
Firefly Algorithm (FFA) [20], and the Cuckoo Search
Optimization (CS) [21]. The algorithms’ implemen-
tations were derived from the EvoloPy optimization
framework [4], and codes are available at Tomas Bata
University A.I.Lab’s GitHub repository2. The method-
ology was the following:

1. Find recommended parameter configurations in
the literature.

2. Run the algorithms with the selected parameter
settings on IEEE CEC 2017 benchmark in 10 and
30 dimensions, 51 runs each, each run consisting
of 10,000·dimension evaluations of the objective
function (as recommended in [1]).

3. Evaluate the performance of the parameter con-
figurations for each algorithm separately. Check
for statistical significance with the Wilcoxon rank-
sum test and Friedman rank test.

4. Determine the most successful parameter settings.

3.1 Selection of Parameter Configurations

The parameter configurations were collected from var-
ious sources, including the author’s parameter recom-
mendations ([19, 18, 22]), default parameter settings
in the EvoloPy optimization framework [4], adopted
parameter settings [10], and parameter studies, that
compared multiple configurations ([2, 6, 13, 17]). In-
stead of a single value, some authors recommended
parameters a range of suitable parameter values (e.g.,
[13, 20, 22]). In such a case, our experiment employed
the final configuration adopted in these publications.
From extensive comparison studies (for example, [2]
compares more than 25,000 parameter settings), we
adopted the winning or recommended parameter com-
binations. Table 1 presents all the studied configura-
tions.

Some Particle Swarm Optimization configurations
initially solved unconstrained problems and left the
vmax value undefined. Since our experiment solved con-
tinuous, bound-constrained, minimization problems,
the vmax value was set experimentally to 6 and 40. The
first one is the default EvoloPy value, and the second
comes from the recommended 20% of the search space
[3].

2https://github.com/TBU-AILab/Bison-Algorithm

3.2 Results and Statistical Interpretation

We employed two statistical tests to examine the Table
1 parameter configurations: the Friedman rank tests
and the Wilcoxon rank-sum test, both with the signifi-
cance level P<0.05. The Friedman rank test in Figure
1 ranks the algorithms across all the tested problems.
Each algorithm over the Nemenyi Critical Distance de-
livered significantly worse results than the first-ranked
algorithm. All the obtained results were statistically
significant (Table 2). The Wilcoxon rank-sum (Table
6) test shows on how many problems from the testbed
one algorithm significantly outperformed all the others.
The None column counts the problems, with a similar
performance of the algorithms.

Table 2: Friedman P-values (significant if P<0.05).

BAT PSO FFA CS
10 D 1.20E-13 7.39E-48 1.81E-6 8.06E-5
30 D 9.14E-27 1.17E-16 7.92E-3 7.92E-3

Bat Algorithm. The recommended parameter set-
tings for the Bat Algorithm were consistent for both
statistical tests. The BAT 3 configuration outper-
formed all the others.

Particle Swarm Optimization. The results of the
PSO parameter tuning varied based on the dimension-
ality of the problem. The PSO 3 and PSO 7 configu-
rations excelled in 10 dimensions. They both signifi-
cantly outperformed all the other settings in 29 cases
out of 30. A pair-wise comparison with the Wilcoxon
rank-sum test (in Table 3) revealed the PSO 7 config-
uration’s superiority.

In 30 dimensions, the statistical tests had different
results. While the Friedman rank test ranked the PSO
0 the first, the Wilcoxon rank-sum test highlighted the
PSO 5 configuration. Table 4 shows a pair-wise com-
parison between these two configurations, favoring the
PSO 0 parameter setting.

Finally, Table 5 compares the winning parameter
configurations. The recommendation, thus, differs
based on the problem’s dimensionality: PSO 7 for 10
D and PSO 0 for 30 D.

Table 3: Wilcoxon rank-sum test on pair comparison
of PSO 3 and PSO 7 (α=0.05).

PSO 3 PSO 7 None
10 D 0 0 30
30 D 6 22 2

Table 4: Wilcoxon rank-sum test on pair comparison
of PSO 0 and PSO 5 (α=0.05).

PSO 0 PSO 5 None
10 D 8 13 9
30 D 15 6 9
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Figure 1: Friedman rank tests of the BAT, PSO, FFA, and CS algorithms with various parameter configurations.

Table 5: Wilcoxon rank-sum test on pair comparison
of PSO 0, PSO 5, and PSO 7 (α=0.05).

PSO 0 PSO 5 PSO 7 None
10 D 0 0 29 1
30 D 13 4 1 12

Firefly Algorithm. The Firefly Algorithm also had
ambiguous results. While FFA 1, FFA 2, and FFA 3
delivered the best results in lower dimensions according

to the Friedman rank test, in 30 D, FFA 0 significantly
outperformed the other settings on 13 problems with
the Wilcoxon rank-sum test. The final decision, thus,
depends on the targeted dimensionality.

Cuckoo Search. The results of both statistical tests
proved the superiority of the CS 3 parameter configu-
ration.
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Table 6: Results of the Wilcoxon rank-sum test comparing the parameter settings of the Bat Algorithm, Particle
Swarm Optimization, Firefly Algorithm and Cuckoo Search Optimization (α=0.05) on 30 functions of IEEE
CEC 2017.

Dimension BAT 0 BAT 1 BAT 2 BAT 3 None
10 D 0 0 1 6 23
30 D 2 0 0 8 20

Sum of wins 2 0 1 14 43

Dimension PSO 0 PSO 1 PSO 2 PSO 3 PSO 4 PSO 5 PSO 6 PSO 7 None
10 D 0 0 0 29 0 0 0 29 1
30 D 3 0 1 0 0 4 0 1 21

Sum of wins 3 0 1 29 0 4 0 30 22

Dimension FFA 0 FFA 1 FFA 2 FFA 3 None
10 D 1 0 3 1 25
30 D 13 0 3 2 12

Sum of wins 14 0 6 3 37

Dimension CS 0 CS 1 CS 2 CS 3 None
10 D 0 8 0 14 8
30 D 1 10 1 11 7

Sum of wins 1 18 1 25 15

Table 7: Recommended parameter configurations.

Bat Algorithm
For dimensionality NP Loudness Pulse rate Qmin Qmax Test set

All dimensions [16] 50 1.5 0.5 0 2 BAT 3

Particle Swarm Optimization
For dimensionality NP Wmax Wmin vmax

1 C1=C2 Test set
30 D [4] 50 0.9 0.2 6 2 PSO 0
10 D [6] 30 0.5 0.5 61 1.9 PSO 3 (or PSO 7)

Minimal Friedman rank sum [6] 30 0.5 0.5 401 1.9 PSO 7

Firefly Algorithm
For dimensionality NP Alpha Gamma Beta Lambda Test set

30 D [4] 50 0.5 1 0.2 1.0 FFA 0
10 D [18] 20 0.25 1 0.2 1.0 FFA 2

Minimal Friedman rank sum [11, 17] 50 0.2 1.5 0.2 1.0 FFA 3

Cuckoo Search
For dimensionality NP Pa Alpha Test set

All dimensions [4] 20 0.25 0.01 CS 3

3.3 Winning Parameter Configurations

Table 7 presents the winning parameter configurations.
While some parameter configurations (BAT 3, CS 3)
outperformed the other settings by both statistical
measures, the PSO and FFA experiments’ interpreta-
tion was dependent on the solved dimension.

Hence, the winning configurations include a recom-
mendation for 10 and 30 dimensions separately and the
lowest sum of both dimensions’ Friedman ranks.

The final decision for the appropriate choice of pa-
rameter configuration should reflect both the solved
problems’ dimensionality and the benchmark’s profile.
The IEEE CEC 2017 benchmarking competition exam-

ines the 10, 30, 50, and 100 dimensions [1]. In such a
case, we would suggest using the configurations suited
for 30 dimensions.

4 Effect of Untuned Parameter Selection

This section analyses the impact of the parameter se-
lection. We compared three scenarios and investigated
the final interpretation of the statistical results. The
results were statistically significant by the Friedman
rank test (Table 8) and the Wilcoxon rank-sum test
with the significance level P<0.05. Yet, all the results
promoted different algorithms, based on the parameter
selection.

 
 

MENDEL — Soft Computing Journal, Volume 26, No.2, December 2020, Brno, Czech RepublicX 

 
 

13

A. Kazikova et al.



Table 8: Friedman P-values (significant if P<0.05).

Example A Example B Example C
10 D 1.90E-32 1.18E-18 4.62E-17
30 D 4.73E-26 6.98E-20 2.15E-17

4.1 Example A: Parameter Selection Suited for 10
D Problems

The first scenario compared the algorithms with the
parameters selected to fit the 10-dimensional problems
(based on Table 7): PSO 7, BAT 3, FFA 2, and CS 3.
The PSO 7 configuration reached the highest sum of
wins in the Wilcoxon rank-sum test (Table 9) and could
be considered the most successful algorithm. However,
in 30 dimensions, the PSO 7 was significantly worse
than the FFA 2 configuration (Figure 2).

Table 9: Example A: Winning algorithms on IEEE
CEC 2017 with parameters suited for 10 D (Wilcoxon
α=0.05).

PSO 7 BAT 3 FFA 2 CS 3 None
10 D 28 0 0 0 2
30 D 1 0 14 11 4

Sum of wins 29 0 14 11 6

Figure 2: Example A: Friedman rank tests of the com-
pared algorithms with parameter suited for 10 D.

4.2 Example B: Parameter Selection Suited for 30
D Problems

The second scenario investigated the algorithms’
comparison with parameters selection suited for
30-dimensional problems. The parameter selection
included the PSO 0, BAT 3, FFA 0, and CS 3. The
Wilcoxon rank-sum test in Table 10 and Friedman

rank test in Figure 3 show the superiority of the
Cuckoo Search Optimization.

Table 10: Example B: Winning algorithms on IEEE
CEC 2017 with parameters suited for 30 D (Wilcoxon
α=0.05).

PSO 0 BAT 3 FFA 0 CS 3 None
10 D 5 0 0 22 3
30 D 3 0 13 11 3

Sum of wins 8 0 13 33 6

Figure 3: Example B: Friedman rank tests of the com-
pared algorithms with parameter suited for 30 D.

4.3 Example C: Parameter Selection Based on the
Sum of Friedman Ranks

The third example considers a comparison of algo-
rithms with an inappropriate parameter selection. The
experiment compared the algorithms with the worst
performance measured by the maximal sum of Fried-
man ranks: PSO 4, BAT 1, FFA 0, CS 2. This ex-
periment might serve as a showcase, what might hap-
pen without proper attention to the parameter setting.
Once again, the statistical results in Table 11 and Fig-
ure 4 are different from previous examples: this time
in favor of the Firefly Algorithm.

Table 11: Example C: Winning algorithms on IEEE
CEC 2017 with a parameter selection based on the
maximal sum of Friedman ranks (Wilcoxon α=0.05).

PSO 4 BAT 1 FFA 0 CS 2 None
10 D 3 1 1 19 6
30 D 0 0 25 3 2

Sum of wins 3 1 26 22 8

 
 

MENDEL — Soft Computing Journal, Volume 26, No.2, December 2020, Brno, Czech RepublicX 

 
 

14



Figure 4: Example C: Friedman rank tests of the com-
pared algorithms with inappropriate parameters (with
the worst sum of Friedman ranks).

5 Conclusion

Although it is well-known that control parameter se-
lection influences the performance of metaheuristic al-
gorithms, the magnitude of the effect of parameter set-
tings on the overall performance of the metaheuristic
is often being misunderstood and underestimated.

This paper investigated the winning configurations
of several extensive parameter tuning studies; however,
the results varied substantially.

Moreover, in our experiment, three parameter se-
lections led to three different outcomes – promoting a
diverse metaheuristic every time. Our findings formed
the following conclusions:

• The parameter tuning should be an integral part
of the metaheuristic comparison practice.

• The choice of parameter configuration should be
made with regard to the currently solved prob-
lem. While one set of parameters may fit one type
of problem, it might be entirely inappropriate for
another.

• Misplaced parameter configuration may produce
biased results.

Since parameter tuning is a rather complicated pro-
cess, the authors of novel metaheuristics should also
focus on control parameter sensitivity analysis. Pro-
moting better practice in algorithmic testing is a way
to renew the metaheuristic reputation, and we hope
that following these recommendations might raise the
quality of testing and development processes.
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