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Abstract
In this work, the development of a data acquisition system for adaptive monitoring
based on a dynamic quadratic neural unit is presented. Acquisition of the contin-
uous signal is achieved with the BITalino biomedical data acquisition card. The
system is trained sample-by-sample with a real time recurrent learning method.
Then, possible cardiac arrhythmia is predicted by implementing the adaptive mon-
itoring in real time to recognize patterns that predict cardiac arrhythmia up to 1
second in advance. For the evaluation of the interface, tests are performed using
the obtained signal in real time.
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1 Introduction

Cardiovascular disease is a class of diseases that involve
the heart or blood vessels, and it can lead to a heart
attack, chest pain (angina) or stroke. These diseases
remain a serious health problem around the world ac-
cording to the World Health Organization (WHO). Is-
chemic heart disease and stroke are examples of cardio-
vascular diseases, and they were the top major causes
of death from 2000 to 2020 [20]. Arrhythmias can
be found in individuals with cardiovascular disease
(CVD), which is one of the leading causes of death
worldwide, representing approximately 27 % of the to-
tal deaths from heart disease [20, 26].

The electrocardiogram (ECG) is the most common
and effective diagnosis tool used to measure and record
the electrical activity of the heart in detail [16]. ECG
records are obtained by sampling the bioelectric cur-
rents sensed by several electrodes, known as leads. The
ECG non-stationary signal allows for the detection of
cardiac rhythm abnormalities and the diagnosis of a
wide range of heart conditions (including arrhythmia)
due to it being a non-invasive, effective, simple and
inexpensive procedure [1].

An increasing number of people are concerned about
their health, and current lifestyle factors are encourag-
ing researchers to develop portable wireless devices ca-
pable of monitoring and automatically registering vital
signs such as blood pressure, body temperature, elec-
trocardiogram (ECG) signals, and encephalographic
signals, among others [26]. An ECG arrhythmia can
be defined as any condition in which the electrical
activity of the heart is irregular and can cause the
heartbeat to become faster or slower; consequently, the
blood pressure can be temporally paralyzed and some-
times cause death. Arrhythmias are identified based

on where they occur in the heart (atria or ventricles)
and based on how the heart’s rhythm changes when
they occur. Arrhythmias that start in the atria are
called atrial or supraventricular (above the ventricles),
whereas arrhythmias that start in the ventricles are
called ventricular [28].

An arrhythmia may occur at random in the time
scale, and symptoms would be manifested at certain
irregular intervals during the day but may not appear
at all times [1]. An arrhythmia may indicate suscepti-
bility to serious heart disease, stroke or sudden death.
Therefore, the early detection and precise discrimina-
tion of ECG arrhythmia is essential for patient treat-
ment. The ECG signal has to be observed over several
hours to detect a cardiac arrhythmia because the vol-
ume of ECG data is enormous. A medical expert may
fail to diagnose heart abnormalities due to the non-
stationary nature of ECG signals, thereby resulting
in life-threatening situations. The analysis of massive
ECG data to manually diagnose cardiac disease is very
difficult, which makes it a tedious and time consuming
task. Therefore, computer-based detection and clas-
sification of arrhythmia is one of the critical research
fields in clinical cardiology because it can save the life
of patients, particularly for the treatment of patients
in intensive care units [16].

The proper classification of an ECG signal is
achieved by finding the characteristic shapes that can
effectively discriminate among required diagnostic
categories [29]. The ECG shows each heartbeat as a
series of electrical waves. The contractions that pump
blood are represented by the P wave, the QRS complex
(union of Q, R, S waves) and T wave. Occasionally,
a U-wave may also be present after the T wave. The
P wave represents activity in the upper chambers of
the heart, whereas the QRS complex and T wave
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represent activity in the lower chambers [11]. A single
cardiac cycle of an ECG is presented in Fig. 1.

Figure 1: ECG for a single cardiac cycle [26].

According to the medical definition, the most impor-
tant information from an ECG signal is almost concen-
trated on the P wave, QRS complex and T wave. The
QRS complex, because of its very distinguished shape
that facilitates its detection, is generally regarded as a
reference point for locating the remaining waves [14].
Consequently, one of the crucial steps in real-time
computer-based ECG analysis is the accurate detection
of the QRS complexes, particularly the R wave peaks.
The detection of the R wave is easier than other ECG
waves due to its structural form and its high ampli-
tude. Currently, it is particularly difficult to achieve
QRS complex detection while the monitoring is run-
ning during normal daily activity; this is primarily due
to morphological differences in the waveform recorded
between subjects or due to high noise contamination
caused by motion artifacts, muscular movements, or
baseline drift changes.

Currently, the unusual pattern detection and predic-
tion of dynamic systems is a topic of scientific interest.
The representability by time series is usually used for
the observability of real-time monitoring systems. The
complexity of heart rate variability signals can be con-
sidered as chaotic because of instability and perturba-
tions present during the monitoring; because of this,
electrocardiogram (ECG) signal modeling and predic-
tion are difficult. The variations affect the predic-
tion accuracy, and therefore the applications in which
ECG signal modeling and prediction have been imple-
mented are compromised. One of the examples that
can be mentioned is the application in medical treat-
ment. Because of the above mentioned considerations,
ECG monitoring by adaptive models is proposed [12].

In this research work, a pattern monitoring system
is constantly fed new data obtained from the heart rate
signals acquired from a BITalino biomedical data ac-
quisition card [26]. The system has been implemented
by a dynamic quadratic neural unit (DQNU) with

sample-by-sample real time recurrent learning (RTRL);
in this sense, the system error function decreases con-
siderably and the algorithm is capable of efficiently
modeling the cardiac behavior of people from the age of
23 years old in real time. In addition, through the im-
plementation of the adaptive monitoring system, the
algorithm is able to recognize patterns that can pre-
dict a possible cardiac arrhythmia up to 1 second in
advance.

The structure of this research paper is as follows:
section 2.1 illustrates different studies related to car-
diac arrhythmia detection and prediction; section 2.2
presents a motivating example; the methodology ap-
plied for cardiac arrhythmia prediction is described in
section 3; in section 3.7, the obtained results are
shown and discussed accordingly; section 3.8, presents
the comparison of the proposal against related work;
finally, conclusions and future work are summarized in
section 4.

2 Problem Formulation

2.1 Related Work

Next, some works are presented in which a variety of
algorithms and tools are used to perform cardiac ar-
rhythmia monitoring. These works were used as refer-
ences in developing the following research.

Many researchers have addressed the problem of au-
tomatically detecting and classifying cardiac rhythms.
K-nearest neighbor [15], feedforward neural networks
as multilayer perceptron (MLP) [18], support vector
machines (SVM) [30], fuzzy or neuro-fuzzy systems
[32], Markov models [6] and combinations from differ-
ent approaches have been used in the literature for this
purpose [7, 4, 13].

Although arrhythmia classification is a challenging
problem due to the significant variations in the tempo-
ral and morphological characteristics of ECG signals
for different patients and under different conditions,
several unsupervised learning methods have been de-
veloped. [10] applied a new clustering method based
on the kernelized fuzzy c-means algorithm to detect ar-
rhythmias by mapping into a higher dimensional space.
[34] selected five types of arrhythmias from the MIT-
BIH arrhythmia database to be analyzed, and the diag-
nosis performance was accurate because of the cluster-
ing performance resulting from a new multiclass clus-
tering method based on the maximum margin clus-
tering algorithm and immune evolutionary algorithm.
Although there are many ECG clustering algorithms
for detecting arrhythmias, these methods present some
disadvantages: trapping into local minima, lack of prior
knowledge for the parameters of the clustering method,
and sensitivity to initialization. In addition to unsu-
pervised methods, supervised methods have also been
employed to classify ECG arrhythmias. The SVM
method is one of the main supervised learning meth-
ods and has been proven to be powerful [30, 7, 13].
As the most well-known method in supervised learn-
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ing, the artificial neural network (ANN) classification
method has been extensively applied to ECG arrhyth-
mia classification. In this regard, the MLP has been
shown to be able to accurately recognize and classify
ECG arrhythmias. In particular, ANN has been inte-
grated with other methods to improve accuracy, such
as the use of data reduction and feature extraction
techniques, including independent component analysis
(ICA) [17], principal component analysis (PCA) [31],
wavelet transform [9] and fuzzy logic [22], among oth-
ers. However, ANN algorithms can become trapped in
local minima, and they suffer from random settings of
initial values of weights. Additionally, compared to
SVM, ANN has less mean square error, but the train-
ing stage is slower.

[27] developed an early warning system to moni-
tor cardiac behavior in a person. The information is
processed and analyzed to send warning signals to the
early warning module in the case of cardiac abnormali-
ties. On the other hand, [23] proposed an algorithm for
the detection of normal and abnormal heartbeats from
ECG signals, achieving a combined total accuracy rate
of 93.44%. [19] proposed a system based on the Inter-
net of Things (IoT) to monitor human biomedical sig-
nals in activities that involve physical effort. The infor-
mation acquired in real time by these devices presented
a clear social objective capable of predicting not only
situations of sudden death but also possible damage or
injuries. [33] proposed a new method for ECG mon-
itoring based on IoT (Internet of Things) techniques.
ECG data were gathered using a wearable monitoring
node and sent directly to the IoT Cloud using Wi-Fi.
Results revealed that the proposed system was reliable
for real-time ECG data gathering and display, which
can help to discover heart diseases in standard diagno-
sis.

In contrast to the related work, the presented cardiac
arrhythmia prediction in real time consists of monitor-
ing the electrocardiogram signal recorded online from
the BITalino biomedical data acquisition card and pro-
cessing it with the DQNU architecture with RTRL
technique. The objective is to predict possible arrhyth-
mia and to detect those arrhythmia patterns.

2.2 Motivating example

The works of [8], [5] and [3] have presented QNUs
indicating the characteristics of the neural unit for pro-
viding a faster response in comparison to a controller
employing linear state feedback, as well as to con-
trollers applied to nonlinear systems, unstable systems,
and unknown non-linear dynamic systems.

The development of this type of higher-order neu-
ral unit activates new perspectives in the solution of
complex problems, such as pattern recognition and au-
tomatic control: both issues were addressed by [2]
and [24]. Benes focused on automatic control, while
Rodriguez proposed the use of QNU to reduce the num-
ber of neural weights without sacrificing the superior
neural unit performance.

The adaptive novelty detection algorithms are ad-
dressed with higher-order neural units (HONUs) in
[21], where the authors presented two algorithms for
adaptive novelty detection based on supervised learn-
ing of an HONU and a self-organized map model both
with extensions for adaptive monitoring of the exist-
ing closed-loops. These new perspectives of HONUs
are atributed to the characteristics possessed by the
neural units, which contributes to this type of system,
which is classified as difficult to model because of high
complexity with respect to factors such as flexibility,
adaptability, efficiency, and time response, [12].

A higher-order neural unit contains all the nonlin-
ear and linear correlation terms of the input compo-
nents to the r order. It must be remarked that a gen-
eralized structure of a higher-order neural unit is the
polynomial network, which includes a weighted sum of
products of determined input components with a se-
lected power. A backpropagation algorithm is usually
incorporated to train the polynomial networks, and in
many cases terms up to second-order are used, while
the higher-order terms are not required [25].

In addition, a QNU can be used as a feedforward
model for direct prediction of time series with sliding
window retraining. The retraining (sliding window)
allows capturing the dynamics of the non-stationary
time series, and then the prediction becomes closer to
the desired real-time target. This method can be con-
sidered an offline learning method applied on contin-
uously changing training data. The data organized in
the window will be used on a training algorithm, as in
batch learning patterns with a single step increment.
Backpropagation and the Levenberg-Marquardt learn-
ing rule can be used to investigate the performance of
sliding window learning and testing with new and dif-
ferent data [25].

To illustrate the performance of QNU with the slid-
ing window technique, the following motivating exam-
ple is addressed. Here, the data for stock market pre-
diction have been collected for the Standard & Poor’s
500 (S&P 500) index in the USA. The data consist of
technical indicators and monthly closing prices of the
index. The total number of samples for the stock index
is 676, from 1 January 1957 to 1 April 2013. The data
are tested from sample 400 to sample 670. The inputs
are normalized to values between −1 to +1. The ex-
periments are carried out to test the performance of
the models for prediction 3 months in advance. This
corresponds to 3 steps ahead, since the sampling occurs
every month. The root mean squared error (RMSE)
is used to test the performance of the prediction.

The prediction with the static QNU prediction
model is shown in Fig. 2. In Figure 2, the RMSE
of the 3 steps ahead prediction is 93.0222 of the stock
value, with computing time of 10.0881 s. The predic-
tion horizon is obtained for a single length of input
vector x(k) with n = 15. The number of input-output
training samples for the sliding (retraining) window
was set as Ntrain = 100.
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This example demonstrates the ability of the QNU
predictive model for prediction of prices of leading
stock indices. In addition, it highlights the interesting
characteristics of a sliding window approach for tech-
nical applications where the data appear to be highly
non-stationary, and it can be concluded that a DQNU
can exhibit interesting characteristics for more com-
plicated non-stationary signals, such as ECG, and can
achieve superior results due to the ability of the dy-
namic model to feed back the output of the model for
monitoring the predicted output.

3 Problem Solution

The proposed system for the automatic adaptive
methodology can be observed in the diagram in Figure
3, where the composition of the general architecture
of the methodology is shown.

In the signal acquisition stage, the capture of ECG
signals is achieved through patches placed on the sur-
face of the skin on the correct sides of the heart.
For the identification of electrodes and their positions,
the Bitalino (r)evolution card has been used. BITal-
ino’s biomedical development kit is an easy-to-use, low-
cost toolkit for learning applications and prototypes
using body signals. It consists of a printed circuit
board (PCB) with a microcontroller, Bluetooth 2.0, a
digital-to-analog converter (DAC), a 3.7 V to 500 mA
Li-Po battery, an LED actuator, electrocardiography
(EGC), electroencephalography (EEG), electromyog-
raphy (EMG), and electrodermal activity (EDA) sen-
sors, an accelerometer and a light sensor. The small
dimensions of this system and the wireless acquisition
system allow their implementation in a greater number
of experiments [26].

3.1 ECG signal acquisition

The data acquisition was performed through the BITal-
ino (r)evolution card, which has all the necessary com-
ponents to start working with physiological data (see
Fig. 4) [26].

3.1.1 ECG

Heart beats are activated by very-low-amplitude bio-
electric signals generated by a special set of cells in
the heart (the SA node). Electrocardiography (ECG)
allows the translation of these electrical signals to nu-
merical values, which allows their use in a wide range
of applications. This sensor allows the acquisition of
data not only in the chest (“in the person”), but also
in the palms of the hands (“out of the person”), and it
works with pre-gelled electrodes and with most types
of dry electrodes. The bipolar configuration is ideal for
the acquisition of low-noise data [26].

3.2 Sampling

The analog filter processes the analog input to obtain
the band-limited signal, which is sent to the analog-to-
digital conversion unit (ADC). The ADC unit samples
the analog signal, quantizes the sampled signal, and en-
codes the quantized signal levels into the digital signal.
An analog signal (continuous time) is defined at each
point on the time axis and the amplitude axis. There-
fore, the analog signal contains an infinite number of
points.

3.3 Filtering

A bandpass digital filter is applied to facilitate predic-
tion of the ECG signal. The applied bandpass filter is
called a Butterworth filter. The frequency response in
the passband and in the stopband is as flat as possi-
ble; therefore, this filter is also called the maximally
flat magnitude filter. This filter has a minimum phase
change over the passband compared to other conven-
tional IIR filters. On the other hand, the output de-
creases at a rate of −20 dB per decade per pole, and
the phase response becomes less linear with increasing
order of the filter. Compared to Chebyshev and ellip-
tical filters, the Butterworth filter has a slower output
signal but a more linear phase response in the pass-
band.

3.4 Training process

The DQNU uses an RTRL learning method and can be
implemented in discrete or continuous real time. The
notation of DQNU with RTRL is shown in Eq. (1),
where ỹ(k + h) is the predicted neural output and T

represents the transpose of the vector x(k) , which con-
tains the feedback neural output values and the signal
from the heart rate variability (HRV) [12].

ỹ(k + h) =

nx−1∑
i=0

nx−1∑
j=0

xj · wi,j · xi

 (1)

The upper triangular matrix of weights W with neu-
ral bias w0,0 is defined in Eq. (2).

W =


w0,0 w0,1 . . . w0,nx−1

0 w1,1 . . . w1,nx−1

...
...

. . .
...

0 . . . 0 wnx−1,nx−1

 (2)

Equation (3) is the column of the augmented vector
x(k) of the neural input, y stands for the real values, n
is the number of real values that feed the neural input,
k is the variable that describes the discrete time and h
is the prediction horizon.
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Figure 2: Prediction of S&P 500 data by the QNU prediction model with the sliding window approach.The
prediction is 3 steps ahead.

Figure 3: Proposed adaptive methodology for the monitoring system.

x(k) =



1
ỹ(k + h− 1)
ỹ(k + h− 2)

...
ỹ(k + 1)
y(k)

y(k − 1)
...

y(k − n+ 1)


(3)

In Eq. (4), wi,j(k + 1) stands for the adaptation of
neural weights in the new adaptation time of the model:
the sum of the neural weights increment ∆wi,j(k) from
the adaptation of the model and individual weights
wi,j(k) of each discretized value from the HRV.

wi,j(k + 1) = wi,j(k) + ∆wi,j(k) (4)

The increment of the neural weights with RTRL is
described in Eq. 5, where µ is the learning rate that de-
termines in which proportion the neural weights are up-
dated and the velocity of the learning process, e(k+h),

 
 

MENDEL — Soft Computing Journal, Volume 26, No.2, December 2020, Brno, Czech RepublicX 

 
 

33

R. Rodriguez-Jorge and J. Bila



Figure 4: BITalino (r)evolution card [26].

is the error in each discrete time (k+h) that multiplies
the partial derivative of the neural output with respect
to the weights wi,j .

∆wi,j(k) = µ · e(k + h) · ∂ỹ(k + h)

∂wi,j
(5)

3.5 Online monitoring

The DQNU proposed model is under research, and the
development of this methodology has been shown to be
useful in real-time evaluation processes of dynamic sys-
tems from real-world and theoretical systems of chaotic
behavior.

The DQNU system contains an adaptive graphic
monitor which is used for displaying the HRV in real
time. This system consists of detecting and visualizing
unusual patterns that can indicate possible cardiac ar-
rhythmias in patients, by adapting the neural weights
during the model adaptation. In the system, sample-
by-sample adaptation was implemented based on the
gradient descent rule with RTRL [12].

The predictive model monitors the online records of
electrocardiograms (ECG) obtained from the BITalino
biomedical data acquisition card. This makes the pre-
dictive model able to identify patterns in time series
and to achieve the prediction of values of HRV dur-
ing the real-time monitoring. This monitoring is per-
formed on a different data set utilized for the training
stage, which is illustrated on Fig. 3.

3.6 Visualization of variability markers

In the adaptive methodology, the neural weights are
initially random values from −1 to 1, and such val-
ues are updated by the learning process in every itera-
tion time, with respect to the system training intervals.
During this process, the sum of squared error is reduced
to the vicinity of the global minimum. The predictive
model acquires data continuously by sample-by-sample
adaptation. Unusual adaptive neural weights are eval-
uated and visualized by a graphical interface design.
For the detection of changes in the signal, a sensitiv-
ity parameter is initialized experimentally as α = 2.95.
This sensitivity parameter is considered in the online

monitoring in Fig. 3. Online monitoring influences
a condition that allows drawing markers according to
the evaluation of the increment parameters. To allow
drawing of the markers, a condition is considered as in
Eq. 6.

|∆W(k)| ≥ α ·∆W(k) (6)

where |·| stands for the absolute value, and ∆W(k)
corresponds to the average of the weight increments.
Accordingly, a window of a set of values has been con-
sidered for the average weight increment.

This adaptation of DQNU converges singularly and
rapidly to the vicinity of the global minimum thanks
to the gradient descent methodology. The configura-
tions of inputs and outputs of the DQNU are nonlinear;
however, the optimization of the neural weights is a
linearly solvable task due to the DQNU mathematical
structure. It is important to point out that the mathe-
matical structure does not present problems with local
minima due to the adjustment made by the quality of
the training data; however, improper training data will
significantly affect the predictive model [12].

3.7 Experimental results

The recorded data were utilized to validate the adap-
tive monitoring system proposed in this article. The
arrhythmia database contains sampled records for the
adaptive monitoring. Records contain beats, which are
duly identified during the real-time adaptive monitor-
ing. It is important to point out that the adaptive
model is capable of identifying variabilities of ECG ar-
rhythmias, showing different patterns for each case.

The DQNU has been presented in section 3 for pre-
dicting ECG signals. The input configuration of the
model was (n + h), where n stands for the number of
samples of the signal used to feed the model and (h−1)
is the number of feedbacks to feed the input model.
The bias x(k = 1) = 1. The number of training times
has been set to epochs = 50, and the learning rate has
been configured to µ = 0.0001. In addition, a window
for the average of the neural weights increments has
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been considered as window = 180, the initial weights
of the adaptive model have been initialized as random
normalized values. Also, the sensitivity parameter has
been set to α = 2.95, which will be used in the visual-
ization of the variability markers.

Because the adaptive model is based on RTRL,
sample-by-sample adaptation, it can be observed that
the neural output predicts the behavior of the unstable
signal of the real cardiac signals, while markers indicate
the relevant changes of the sampled signal, allowing the
patterns formed in each type of cardiac arrhythmia to
be displayed.

Fig. 5 shows the results of the adaptive monitoring
of a patient with Premature Ventricular Contraction
(PVC) arrhythmias. In the upper subplot, the real
signal is shown with blue lines, and the predicted sig-
nal in real-time monitoring is superimposed with green
lines. Also, the lower subplot presents the visualization
of patterns of the variability markers obtained for the
PVC arrhythmia. PVC arrhythmias are highlighted in
the vertical red blocks.

Fig. 6 presents the results of the adaptive monitor-
ing of the ECG obtained from a patient with Atrial
Premature Contraction (APC) arrhythmia. In the up-
per subplot, the real signal is presented with blue line
color, and the predicted signal in real-time monitoring
is shown by green lines. In addition, the lower subplot
shows the variability patterns visualization with the
markers obtained from the adaptive monitoring sys-
tem. The APC arrhythmia is highlighted in the verti-
cal red blocks in Fig. 6.

Fig. 7 presents the results of the adaptive moni-
toring of the ECG obtained from a patient with nor-
mal hertbeat variability. In the upper subplot, the real
signal is presented with blue lines, and the predicted
signal in real-time monitoring is shown by green lines.
In addition, the lower subplot shows the visualization
of variability patterns with the markers obtained from
the adaptive monitoring system. The normal heart-
beats are highlighted in the vertical red blocks in Fig.
7.

3.8 Comparison with related works

The main contribution of this research is the prediction
and monitoring of the HRV in order to provide a tool
to facilitate medical diagnosis of various cardiac ab-
normalities in patients and therefore avoid premature
death because of an improper medical diagnosis.

Because of the above, several records were utilized in
the adaptive monitoring system for validation, includ-
ing heartbeat records with inverse polarity, low am-
plitude, ventricular ectopics with low signal noise-to-
ratio, premature ventricular heartbeats and premature
atrial heartbeats. In Fig. 5, Fig. 6, and Fig. 7 it
can be demonstrated that the presented methodology
meets the objective of identifying patterns associated
with the different types of cardiac abnormalities dur-
ing real-time monitoring as well as identifying patterns
related to the variability of normal heartbeats. In ad-

dition, a different data set was used during real-time
monitoring versus those used during the training phase
of the system in order to monitor different data from
those learned by the model. The variability markers
are shown through the adaptive monitoring graphics
which indicate the proper detection of the different pat-
terns that might arise during the real-time monitoring.

The main advantage of the methodology of the
DQNU model with respect to other methodology types
addressed by various authors is that a second-order cor-
relation with the RTRL method is applied to capture
nonlinear and complex behavior of the HRV. In addi-
tion, the mathematical notation remains relatively sim-
ple in comparison with other methodologies because
their complexity requires greater processing. Besides,
DQNU does not present problems with local minima
during its optimization.

Currently, an automatic pattern recognition system
is required, which enables automatic classification of
each cardiac abnormality shown above. In addition,
cloud service will be enabled through a connection be-
tween a server and raspberry PI as data acquisition
card. With this cloud service, the cardiac arrhythmia
pattern detection of the proposed model will be imple-
mented in medical institutions.

4 Conclusion

The proposed system is currently in the experimental
stage; however, the results of the monitoring system
for prediction of cardiac arrhythmias allow us to con-
clude according to the figures shown in section 3.7, that
the adaptive model predicts the behavior of the HRV
and presents the variability behavior on a monitor plot.
The model of recurrent learning in real time has been
proven capable of providing the system with the nec-
essary neural weights adaptation on which the values
prediction of HRV is based. This, is attributed to the
algorithm of backpropagation of the error in sample-
by-sample adaptation during training. In its current
stage, the adaptive methodology process plots the vari-
ability markers, and the patterns of variability are vi-
sualized.

Future work will focus on increasing the prediction
horizon without sacrificing the accuracy of the adaptive
model. In addition, a pattern recognition method will
be included in the monitoring system, and automatic
recognition of different types of arrhythmias that may
occur during signal monitoring will also be included.
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Predictive maintenance of an industrial machine using
neural networks.

 
 

MENDEL — Soft Computing Journal, Volume 26, No.2, December 2020, Brno, Czech RepublicX 

 
 

35

R. Rodriguez-Jorge and J. Bila



Figure 5: Adaptive monitoring for the detection of PVC arrhythmias.

Figure 6: Adaptive monitoring for the detection of APC arrhythmia.
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Figure 7: Adaptive monitoring for the detection of normal heartbeat.
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