
TOWARDS REDUCING THE IMPACT OF LOCALISATION ERRORS ON THE
BEHAVIOUR OF A SWARM OF AUTONOMOUS UNDERWATER VEHICLES

Tarek El-Mihoub, Christoph Tholen, Lars Nolle�

Jade University of Applied Sciences, Department of Engineering Science, Germany

{tarek.el-mihoub, christoph.tholen, lars.nolle}@jade-hs.de

Abstract
Localisation errors have a great impact on Autonomous Underwater Vehicles
(AUVs) as search agents. Different approaches for solving the localisation prob-
lem can be used and combined together for greater accuracy in estimating AUVs’
locations. The effect of localisation errors on locating a target can be lightened
by designing a search algorithm that avoids extensive use of exact location in-
formation. In this paper, two cooperative search algorithms are proposed and
evaluated. In these algorithms, a high-level mechanism is employed for building a
global view of the search space using minimum possible search information. These
algorithms rely on low-level search algorithms with exploring roles. Particle Swarm
Optimisation (PSO) and all-to-one Self-Organising Migrating Algorithm (SOMA)
are selected as high-level mechanisms. The conducted experiments demonstrate
that both algorithms show a robust behaviour within a range of localisation errors.
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1 Introduction

A small swarm of Autonomous Underwater Vehicles
(AUVs) can be used for developing a flexible and low
cost environmental marine observatory [14]. AUVs
equipped with suitable sensors for collecting environ-
mental data can explore intermediate size areas to lo-
cate phenomena of interest, like hydrothermal vents,
hazardous substances and organisms [20]. AUVs have
the capabilities to investigate previously inaccessible
marine environments. However, due to their limited
energy capacity, AUVs have a limited search range.
This range can be extended to enable locating a search
target by collaboration between a swarm of AUVs,
which act as an environmental marine observatory.
Such an environmental marine observatory can be
used, for example, to locate submarine groundwater
discharges (SGDs) in coastal waters. These discharges
consist of in-flow of fresh groundwater mixed with sea-
water recirculation [8]. The SGDs discharge continu-
ously nutrients into the coastal environment. Colour,
temperature, salinity and the concentration of some
chemical elements can be used as indirect indicators to
track the dispersal of SGDs and to locate them [9].

2 Localisation Problem

Autonomous mobile robots use their current location
to navigate in their mission space. A robot estimates
its own location and the uncertainty of the estimation
through a localisation process. Localisation has also
a critical role in collision avoidance, motion planning,
data collecting, map building and searching. A robot

can estimate its location by sensing the environment
or/and monitoring its own motion. The estimation er-
rors depend on the details of the localisation task, the
environment, the signals used for sensing the environ-
ment, the motion and the environment sensors. A map
of the mission environment can simplify the localisation
process and reduce the estimation errors. Without a
map, the localisation process becomes a complex pro-
cess as estimating land-mark locations becomes a part
of it.

For AUVs, localisation is particularly essential for
their recovery. It is also challenging as AUVs operate
autonomously in a highly unstructured environment.
The attenuation in the signals of the Global Position-
ing System (GPS), bandwidth limitation and commu-
nication problems aggravate the localisation problem.

AUVs use different approaches to solve the localisa-
tion problem, for example by utilising the environment
as a position reference [13]. Inertial Navigation Sys-
tems (INS) [2] and Doppler Velocity Logs (DVLs) sys-
tems [18] accumulate motion estimation to determine
the current location with reference to the starting lo-
cation. These techniques are prone to integration drift
with time [11]. Resurfacing to receive a GPS signal is
used to reset the drift. However, resurfacing is not al-
ways possible, for example when operating under pack
ice. External references can alleviate degrading the ac-
curacy of the location with time.

Acoustic systems are used to estimate the absolute
location of an AUV. Short baseline (SBL), ultra short
baseline (USBL) and long baseline (LBL) acoustic sys-
tems are not prone to error accumulation inherent in
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motion estimation approaches [13]. In LBL systems,
widely separated acoustic transponders are placed at
known locations under the sea surface. Whereas USBL
and SBL systems localise an AUV relative to a support
vessel. The support vessel is equipped with three or
more GPS-calibrated transponders in the case of SBL
systems and one GPS-calibrated transponder for USBL
systems. The main disadvantages of these systems is
the need for external acoustic sources. In addition, the
range of the acoustic systems is limited and depends
on the acoustic characteristics of the environment [13].

All the above methods are error prone. Different
techniques can process the location data produced by
different localisation methods for more accurate local-
isation. Kalman filters [5], particle filters [4] and si-
multaneous localisation and mapping (SLAM) [6] are
examples of these techniques. The fusion of location
information can improve robustness, resolution and re-
duce localisation errors, but cannot eliminate them
[12].

3 Potential Cooperative Search Algo-
rithms

A search strategy that facilitates collaboration between
a swarm of AUVs is needed to maximise the possibili-
ties of locating a target [10], [7]. A cooperative search
strategy should take into consideration the character-
istics of the environment, the agents and the target [3].
Particle Swarm Optimisation (PSO) has been used as
a collaborative search strategy [16]. However, it might
face a premature convergence problem and can be dis-
tracted by localisation and the communication errors
[16].

A single AUV in the presence of localisation errors
can successfully locate a search target using search
strategies that are based on coverage path planning
[3]. These algorithms are also robust against premature
convergence in a multiple SGDs environment. These
algorithms, which use location information less heavily
in deciding next search actions, have a higher proba-
bility of success.

This paper investigates the possibilities of extending
the concept of alleviating the localisation problem used
in [3] to cooperative search strategies. Based on this
concept, the best potential cooperative strategies are
those, which produce new solutions using the smallest
possible set of solutions. For example, PSO and all-
to-one SOMA [19] can be good candidates to ease the
localisation problem.

PSO models the behaviour of social entities for col-
laboration to locate a target [15]. Each particle moves
towards the target by amending its velocity. The par-
ticle’s velocity depends on its current and the best po-
sition, and the best-known position of the swarm.

~vi+1 = ~vi · ω̄+ r1 · c1(~pbest− ~pi) + r2 · c2(~gbest− ~pi) (1)

Where:

~vi+1 and ~vi : new and current velocity of a particle

ω̄ : inertia weight

~c1 and ~c2 : cognitive and social scaling factors

~r1 and ~r2 : two random numbers from range [0,1]

~pi and ~pbest : current and best known position

of a particle

ḡbest : best known position of the swarm

The new position of a particle ~pi be calculated as fol-
lows:

~pi+1 = ~pi + ~vi+1 · ∆t (2)

Where:

~pi+1 and ~pi : new and current position of a particle

∆t : time step

Self-Organising Migrating Algorithm (SOMA) is a
population-based algorithm, which mimics the social
behaviour of a group of entities [19]. The entities in
all-to-one SOMA move towards the leader (the entity
with the best fitness) while searching. The new po-
sitions of an entity, i.e. the potential new solutions,
depend on its current position and the position of the
leader.

XML+1
i,j,t = XML

i,j,start+(XML
i,j −XML

i,j,start)t·PRTV ectorj
(3)

PRTV ectorj(n) =

{
1, if rnd(n) > prt

0, if rnd(n) < prt
(4)

Where:

ML : current migration round

XML
i,j,start : position of an individual at the

beginning of current migration

XML
i,j : position of the leader

t : jumping step, which defines

the granularity of movement

PRTV ectorj : perturbation vector – its elements

are randomly assigned to 0 or 1

prt : perturbation probability

Based on their use of search information, the perfor-
mance of all-to-one and PSO is expected to be less
sensitive to localisation errors compared with other
population-based algorithms.

4 Outlines of a Cooperative Search algo-
rithm

A cooperative search strategy that is robust against
localisation errors can improve the accuracy of locat-
ing a target by a swarm of AUVs. Based on the as-
sumption that minimising the use of location infor-
mation can reduce the influence of localisation errors
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on the search, the selection for potential algorithms
is narrowed to PSO and all-to-one SOMA. Both al-
gorithms need less search information than other al-
gorithms. The algorithms use the exact location of a
solution and the relative location of one or two solu-
tions. This also means a minimum need for communi-
cation between search agents and both algorithms are
suitable for AUVs where communication problems are
expected.

Developing a reliable cooperative search of a swarm
of AUVs necessitates considering constrains imposed
by using AUVs as search agents [3]. The limitation in
the number of AUVs, the energy and the limitation on
movement can lead to modifying the potential search
strategy. The rest of this section shed some light on
aspects that have been considered in developing the
proposed cooperative strategies.

4.1 Exploration with a Small Swarm

Fair representation of different search regions is essen-
tial for the success of any population-based search al-
gorithm. The population size should be large enough
to maintain diversity to escape local optima. However,
in the current project, the number of search agents
is limited. Only three AUVs can be used as search
agents. For both PSO and all-to-one SOMA, the pos-
sibilities of failure is high with only three search agents
[15]. A possible way to overcome this problem is to
make AUVs focus on exploration more than exploita-
tion. PSO or SOMA as a high-level mechanism can
capture a global view of the search space utilising the
agents’ search information.

Agents can adopt search strategies, which are based
on coverage path planning [3], as low-level search al-
gorithms. Preplanned search paths can be assigned to
agents to cover the search space. A search agent fol-
lows its search path and collects information with the
aim of locating the target. The agent can adhere to
its predefined path without utilising local information
to amend its path as the case in the Pure Preplanned
Path (PPP) algorithm (algorithm-C in [3]). The agent
can also exploit its own information to amend its path,
slightly, for further exploration of the promising regions
as in the Adaptive Preplanned Path (APP) algorithm
(algorithm-A in [3]).

Samples of solutions collected by the agents can be
utilised by a high-level mechanism to build a good
global view. The high-level mechanism processes these
samples to produce better information and share it
with search agents. A search agent can amend its
search path based on the global search information us-
ing its own technique. Following its own path enables
an agent to complete its search mission even in the
case of no gradient information or in the case of com-
munication problems. Figure 1 shows pseudocode of
the proposed framework for both algorithms.

Figure 1: Pseudocode of the proposed framework for
robust cooperative swarm.

4.2 Decision for Exploration or Exploitation and
Energy

A wise use of the AUV’s energy is required to ensure
exploring the whole search space. However, because of
the small number of AUVs and because of the exploita-
tion capabilities of PSO and SOMA, the energy of the
AUV might be completely consumed while visiting only
a small region of the search space. For appropriate util-
isation of the energy of an AUV, the decision to use the
global information can be left to the AUV. The AUV
can decide on amending its path based on the available
energy and the value of the global information. By ac-
quiring the global search information, the AUV has all
necessary information for taking a good decision.

In both algorithms, two AUVs move in the area
around the best performing AUV, aiming to take its
place. Such a competition between the three AUVs,
can lead to wasting the energy resources in a small area
of the search space. It might be better from energy
consumption perspective to restrict such competition
between the AUV with the best solution and the AUV
with the worst solution. It is also possible for each
AUV to utilise global information, probabilistically, to
avoid becoming trapped in a small area. The AUV can
decide to utilise global search information and amend
its path depending on the available energy, the value of
global information, the rank of its best-found solution
and the probability of utilising global information.

Validating the cooperative search decision requires
moving the AUV to the suggested location. Imme-
diate validation necessitates moving to that location.
The energy consumed depends on the distance between
the current location and the suggested location. The
AUV can delay the validation by moving to the sug-
gested location from the nearest location in the pre-
planned search path. This delay can save the AUV’s
energy. However, it can delay utilising new search in-
formation. The preliminary results, not shown in this
paper, demonstrate that such a delay can degrade the
performance of the cooperative algorithms.
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5 Simulations

Simulations were used to evaluate the performance of
the proposed cooperative algorithms and to determine
the impact of the localisation problem on their perfor-
mance.

5.1 Test Environment

The problem of locating the SGD with the highest dis-
charge rate in a marine environment with the dimen-
sions of 400m x 400m is simulated by a two-dimensional
search space. In this space, an SGD is represented by
a Gaussian shape with maximum temperature at its
centre. The temperature of the water outside SGDs
equals to the average water temperature (i.e. no gra-
dient information). A single SGD or two SDGs with
different discharge rates are located randomly in the
search space. The average temperature was set to 30◦

with a Gaussian noise of standard deviation of 0.1◦.
The maximum difference between the average temper-
ature and the temperature of the centres of the SGDs
were set to 6◦C and 4◦C [1]. The radiuses of the basin
of SGDs were selected randomly in the range from 10
to 20 m. These radiuses are smaller than the maximum
distance between the path of preplanned algorithm and
the SGD [14].

Simulation of AUVs as Search Agents

Three AUVs are assigned the task of locating the cen-
tre of the SGD, which has the highest discharge rate.
Each AUV uses a temperature sensor with an accuracy
of 0.01◦C to trace the SGD’s location. Each AUV has a
power supply that is sufficient for travelling a distance
of 4500 meter with an average speed of 1 m/s [14].
Changing the direction of the AUV costs energy and
a change by an angle of 180◦ is assumed to be equiv-
alent to travelling 4 meters [3]. The localisation error
is modelled using a Gaussian probability distribution
with a standard deviation of 0, 0.1, 0.2 and 0.3 meter.
Every second, the AUV senses the water temperature
and estimates its location. The current estimated lo-
cation is used to navigate to the next location of the
search path.

In the experiments, an AUV follows its assigned
search path. Each AUV works in parallel with other
AUVs. The parallel computing toolbox of MATLAB
was used to implement the simulation. Each AUV
sends the highest temperature together with the lo-
cation of that temperature to other AUVs.

For the PSO-based cooperative search algorithm,
the cognitive scaling, the social scaling and the iner-
tia weight parameters were set to 0.5, 1.5 and 1.5, re-
spectively [15]. The worst performing AUV uses global
information to generate a new solution with a proba-
bility of 0.1. The location of new solution is the next
destination of the AUV. The AUVs travel with their
maximum velocity (i.e. 1 m/s).

For the SOMA-based cooperative strategy, the val-
ues of the jumping step, the perturbation probability
and the path length parameters were set 0.3, 0.5 and
1.9, respectively [17]. With these values of the jump-
ing step and the path length, six new solutions are
generated by the high-level mechanism at each itera-
tion. The worst performing AUV uses the global in-
formation to generate new solutions with a probability
of 0.1. The locations of steps in the direction of the
leader are inserted next to the current location in the
search path of the AUV.

5.2 Performance Criterion

The accuracy in locating the global SGD is used as the
performance criterion in the simulations. The global
SGD is the SGD, whose centre has the highest tem-
perature. The accuracy is measured as the distance
between the exact location of the global SGD’s cen-
tre and the reported location by the algorithm. The
standard deviation in achieving this accuracy for dif-
ferent localisation error distributions is used to show
the sensitivity of the algorithms to localisation errors.

In these simulations, the performance of the coop-
erative algorithms were evaluated and compared with
a non-cooperative algorithm. In the latter case, the
AUVs follow their predefined search paths without
sharing any global information.

6 Results and Discussion

Different sets of experiments have been conducted to
evaluate the robustness of the cooperative behaviour
of the proposed algorithms. In these experiments, the
performances of the algorithms are compared using two
different low-level search algorithms. The first algo-
rithm is the Pure Preplanned Path (PPP) algorithm.
The second algorithm is the Adaptive Preplanned Path
(APP) algorithm.

The performance was evaluated in the presence of lo-
calisation errors of Gaussian nature with different stan-
dard deviation values. Each experiment was repeated
for 100 times with each localisation error distribution.
The results of these experiments were used to extract
the cumulative distribution of the accuracy of each al-
gorithm. The performance of each algorithm is visu-
alised as the cumulative distribution of the best-found
accuracy with its standard deviation for different local-
isation error distributions. In this section, the results
of the conducted experiments are summarised and dis-
cussed.

6.1 Cooperative PPP Agents

The first set of experiments focus on the exploitation
capabilities of the cooperative search algorithm em-
ployed. In these experiments, the PPP algorithm is
used as a low-level search algorithm. The performances
were compared on fitness landscapes with one and two
SGDs.
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Figure 2: The performance on a single SGD environment using the PPP algorithm.

Figure 3: The performance on a two SGDs environment using the PPP algorithm.

Figure 2 shows the performance of the algorithms
on a search space with a single SGD. The probabili-
ties of locating the global optimum with different ac-
curacies for the algorithms are depicted in the figure.
The standard deviation in the achieved accuracy for
each probability is also shown in the graph as horizon-
tal line. The graphs show that both cooperative algo-
rithms have higher probabilities of locating the global
optimum with higher accuracy compared with the non-

cooperative algorithm. The figure also shows that the
SOMA-based algorithm slightly outperforms the PSO-
based algorithm. The graph shows that the standard
deviations in the accuracy of the non-cooperative algo-
rithm is less than that of the cooperative algorithms.
In other words, the non-cooperative algorithm is less
sensitive to localisation errors than the cooperative
ones. However, the cooperative behaviour of both al-
gorithms is robust against localisation errors, as they
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Figure 4: The performance on a two SGDs environment in terms of fitness.

Figure 5: The performance on a two SGDs environment using the APP algorithm.

still outperform the non-cooperative one. The figure
also shows that the SOMA-based algorithm is less sen-
sitive to localisation errors compared with the PSO-
based algorithm in terms of their ability to locate the
global optimum.

Figure 3 compares the performance of the algorithms
on a search space with two SGDs. It also shows the
deviations in the accuracy of locating the global opti-
mum by different algorithms for different localisation
errors. The graphs show that the SOMA-based cooper-
ative algorithm has the best performance in more than

60% of the experiments even with localisation errors
of a standard deviation of up to 0.3 meter. It also
illustrates that the probabilities of finding the global
optimum with an accuracy of less than 1 meter by the
SOMA-based algorithm is more than 0.55, and more
than 0.5 by the PSO-based algorithm compared with
only 0.51 for the non-cooperative algorithm. The figure
also shows that for accuracies of more than 5 meters,
the difference in the probabities between the cooper-
ative and the non-cooperative algorithms reduces to
0.15.
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Figure 4 shows the highest reported fitness (temper-
ature) for the different algorithms. The error bars in
the figure show the deviation in the fitness for differ-
ent localisation errors. The exploitation capabilities of
the SOMA- and PSO-based cooperative algorithms are
demonstrated in this figure. Once an AUV passes by
an SGD, the cooperative algorithm can locate its cen-
tre with high accuracy. The exploitation ability of the
SOMA-based algorithm can explain its superiority over
the PSO-based in locating SGDs with higher accuracy.
The SOMA-based algorithm generates a set of points
in the search space between the current location and
the location of the best solution. These points lie in
different directions with respect to the current solution.
On the other hand, the PSO-based algorithm generates
a single point towards the location of the best solution
and the AUV senses the temperature on the path to
this new generated location.

6.2 Cooperative APP Agents

The experiments conducted using the PPP algorithm
demonstrate the ability of the proposed high-level
mechanisms to utilise global information to locate the
global optimum. The APP algorithm outperforms the
PPP algorithm in the presence of localisation errors [3].
Incorporating the APP algorithm can further improve
the collaborative behaviour of the swarm against the
localisation problem. To validate this assumption, the
proposed SOMA and PSO based algorithms are com-
bined with the APP algorithm. The benefits of such
combination is evaluated by testing its ability to locate
the global optimum in a search space with two SGDs.

Figure 5 shows the performance of the cooperative
and the non-cooperative algorithms when combined
with the APP algorithm. The graphs show that intro-
ducing the APP algorithm improves slightly the perfor-
mance of the three algorithms. However, the improve-
ment in the PSO-based cooperative algorithm is the
most among these algorithms. Introducing the APP
algorithm into the PSO-based algorithm increases the
probability of locating the global SGD. It reduces the
gap in the performance between the PSO-based and
SOMA-based algorithms.

7 Conclusion and Future Work

The performance of the proposed cooperative algo-
rithms demonstrates that the effect of the localisation
problem can be alleviated by light use of location infor-
mation. The superiority of SOMA over the PSO-based
algorithm can be explained by their use of location in-
formation and their exploitation abilities. The SOMA-
based algorithm needs the current location of the AUV
together to the best-found location by the swarm to
move towards a better location. In addition to the
information that is needed by the SOMA-algorithm,
the PSO-based algorithm needs the best-found loca-
tion by the AUV. The PSO-based algorithm also im-
plicitly uses the accumulated location information to

determine the particle current speed. Furthermore, the
SOMA-based algorithm explores the space around the
best solution and the PSO-based algorithm explores
only the path from the current solution towards the
best solution.

Incorporating the APP algorithm improves the abil-
ity of the low-level algorithms to guide the AUVs to-
wards the centre of an SGD. This facilitates the role of
the PSO algorithm to locate the SGDs’ centre. This
also explains the decrease in the standard deviation of
the accuracy in locating the global optimum achieved
by the cooperative algorithms using the APP algo-
rithm.

The next step in this research is to combine the coop-
erative search algorithms with inertia-levy flight [14].
The impact of the localisation, navigation and commu-
nication errors on the performance of this combination
will be investigated. The results of the research will be
tested and evaluated by applying them to a swarm of
real AUVs cur-rently under development to locate an
SGD location.
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