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Abstract 
This paper compares centrality indices usage within a heuristic method for a fast 
spread of alarm, or crucial information. Such indices can be used as a core part 
within more sophisticated optimisation methods, which should determine a graph 
parameter - burning number, defining, how fast can an alarm spread through all 
nodes. In this procedure at each time step a new chosen node is alarmed (i.e. 
burned) “from outside”, and already alarmed nodes at each time step then alarm 
their neighbours. The procedure ends, when all the nodes are alarmed (i.e. burned). 
The optimisation heuristic should choose such ordered sequence of nodes, which 
are to be alarmed “from outside”, that their number, equal the number of time 
steps (i.e. burning number) necessary to alarm the whole network, is minimised. 
The NP completeness of the problem necessitates a usage of heuristics. However, 
even the heuristics can be slower, reaching towards a global optimum, or faster, 
exchanging part of the quality for a time. This paper studies the usage of centrality 
indices in a simpler and faster heuristic. It should be useful e.g. for a mobile 
network of cars or drones, when an optimal solution cannot be computed in 
advance, or take too much CPU time, since the connections within the dynamic 
network might not exist any longer. A wide range of centrality indices was tested 
on selected networks, both real as well as artificially generated. While the 
performances of indices substantially differ for different types of networks, results 
show, which centrality indices work well across all tested networks. 
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1   Introduction 
Spreading an information, be it alarm, traffic management instructions to swarms of air drones or wi-fi 
connected cars via satellite, or instructions to a land-based group of connected monitoring stations, should be 
done quickly and effectively. Often, delivery of time-critical information can reduce operational risk [8]. Ideally, 
the information is sent to the selected nodes (drone, vehicle, station), which then proceed to inform their 
neighbours, and their neighbours inform their neighbours, while the satellite continues to connect with further 
nodes, which did not yet obtain the information. This information delivery is finished when all the nodes 
obtained the information, or, if the information should be renewed periodically, another round of information 
delivery is started. Whether the information delivery is one-time job or repeating one, it should be done as fast 
as possible.  

Let us, for the sake of simplification, assume that the time it takes to contact one node via satellite (e.g. 
secure laser connection) is the same as the time necessary for the node to contact all its direct neighbours. The 
time optimisation task is then reduced to the optimal selection of a minimal sequence of nodes, which are, one 
at each time step, informed by a satellite. The selection of nodes and their order depends heavily on the size 
and structure of the network, where two nodes are connected, when they can reach each other through local 
connection, e.g. wi-fi. Such a problem was already extensively studied from a purely mathematical point of 
view in graph theory as a burning number problem [5,6,13]. The burning number is the number of time steps 
(as well as the number of nodes in the optimum sequence), after which all the nodes obtained their information.  

A host of similar problems also exists, like ݇ centre selection [9], gossiping [11], broadcasting of control or 
emergency packets using clustering [2, 12], influence maximisation [16], or firefighter problem [7]. However, 
their solution cannot be used directly in the burning number problem.  

Soon after the burning number problem was formally defined, its solution was proved NP-complete [3]. The 
above-mentioned graph theorists provided algorithms only to determine the upper and lower boundaries of the 
solution. While the determination of upper boundaries provided also a solution to the problem in a form of 
sequence of nodes, it was typically rather suboptimal, as shown in further study aimed at heuristic optimisation 
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of burning number [18]. The heuristics studied in [18] used as its part only one way how to determine a current 
“center” of the network, based on eigenvector. Moreover, even though the more sophisticated heuristics 
designed in [18] obtained better solutions by a rather complicated guided search through the search space, they 
were rather cumbersome and more CPU demanding.  

The computational demands of the existing heuristics were the main reason, why in this paper we are trying 
to use a range of centrality measures apart from eigenvector values. Here, these centrality indices are combined 
with the simplest and least demanding heuristic approach from [18], in the hope to obtain “quick and dirty” 
solution, that can be further speeded up by a parallelization [17]. Such fast heuristic could be used e.g. in the 
mentioned dynamic network of mobile nodes with time-dependent structure. A perfect, but more CPU 
demanding heuristic might provide a solution, which might be no longer valid, because the network topology 
changed in the meantime. The selection of the best centrality index might be also used further in more 
sophisticated approaches instead of the eigenvalue index. 

2   Centrality Indices and Burning Number 
A networks for the present approach shall be simplified into a graph ܩ = (ܸ,  which vertices from the vertex ,(ܧ
set ܸ do not have positions in the Euclidean space and its edges from a set ܧ are not directed or weighted and 
the graph does not contain loops or multiple edges. The distance ݀݅ݑ)ீݐݏ; ,ݑ of vertices (ݒ ݒ ∈ ܸ equals the 
number of edges in a shortest path between them. Formally [6], the burning number ܾ(ܩ) is the minimum 
integer value ݇ such, that there exists a sequence of vertices ݔଵ, … , ݑ  and any vertexݔ ∈ ܸ is within a distance 
݇ − ݅ for some vertex ݔ from the sequence.  

 
Figure 1: An example of a graph with the burning number 7 (the graph is further referred to as 
squaredIdealBurn7), where the sequence of vertices ԧφ,… , ԧϨ can be specified as the central vertices of the red, 
yellow, green, dark blue, light blue, light green and maroon sets of vertices, from which the “burning” 
consecutively spread. 

In the Figure 1 are shown by coloured regions the vertices, which obtained their information, directly or 
through intermediate vertices, from the central vertices of the coloured regions. The centre of the greatest red 
region was the first in the sequence, so in the second time step it sent its information to its 4 neighbours in 
the distance 1, while the yellow centre region got its information. In the third step, the 4 red neighbours sent 
the information to their 8 neighbours, while the yellow centre node sent the information to its 4 neighbours 
and the centre of the green region got its information. In a similar way the information spreads in 7 steps 
through the whole network. In the Figure 1 there are no cases, when an uninformed vertex could get an 
information from 2 “differently coloured” informed neighbours, but it may happen in other cases. However, 
the colours are shown here only for our information, basically the vertices are divided only into two groups, 
informed or uninformed, and it does not matter, from which neighbour a vertex got its information (further in 
indecisive cases the matter is solved randomly).   

As can be seen from the Figure 1, it would be advantageous to find out a vertex ԧφ somewhere near the 
centre of the graph, and for a presumed burning number Ԛ, the algorithm should remove the vertex together 
with its neighbourhood up to the distance Ԛ − 1. Then a second centre, the second entry ԧϵ for the sequence 
of ԧφ,… , ԧֆ should be selected and its Ԛ − 2 neighbourhood removed, etc. The problem is, how to define the 
centre. In [18] an eigenvector index was used, where a vertex with its maximum value was selected as a next 
centre for the vertex sequence ԧφ,… , ԧֆ. The simple, greedy like version of the algorithm described above did 
not work ideally. It found out a burning number 10 instead of the ideal burning number 7 illustrated above in 
the Figure 7. The Figure 7 shows also the reason of this failure. The ideal centres, whatever their definition, 
are often not wholly ideal, and a slightly “off center” selection partially “tugged” in a corner might be better. 
Rather complicated algorithm, more extensively searching through the search space, was given in [18]. 
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Therefore, it might be advantageous to try other centrality indices in simpler approaches to find out, if they 
would not provide better results than eigenvector centrality.  

In all the approaches to find the burning number [6, 18], the idea is to try a concrete burning number n, 
corresponding to a selection of a sequence vertices ԧφ,… , ԧ։, serving as the centres. If the graph is not burned, 
then try another burning number n with a different sequence of vertices. This search for a proper n is most 
efficiently done by a binary search, where the goal is to pinpoint a critical number ԝ, for which vertex sequence 
“burns” or informs the whole graph, but for ԝ − 1 no such sequence can be found. The difference between a 
burning number found by a perfect algorithm, and a suboptimum higher estimate of burning number found by 
a less than perfect algorithm is typically in one or at most several units. 

In order to distinguish more distinctly between centrality indices used to find a burning number, in the 
following description we shall use the “ideal” burning number found out by a lengthy procedure as an estimate, 
and see, how close the fast imperfect algorithm will come to informing all vertices by using different centrality 
indexes. 
Further, we are not trying to find out a burning number, but to see, how many vertices were left uninformed 
or “unburned”. This number is much more discriminating, since the number of vertices is typically greater by 
two orders of magnitude, and the number of remaining unburned vertices is usually greater by an order of 
magnitude than the burning number. 

 

3   The Algorithm Testing Centralities to Minimize the Number of Unburned 
Vertices 
As already stated in the previous section, a typical algorithm aimed to find a burning number consists of two 
parts: A binary like search for a burning number, where the answers: “The tested number resulted in all 
vertices “burned”” or “The tested number resulted in some vertices left “unburned””. The second part of the 
algorithm consists of a function, which tries, for a given number n, to generate such a sequence of vertices 
ԧφ,… , ԧ։, which should burn as much vertices as possible. The further described algorithm, used for testing, 
does not give a binary result that the tried number is/is not a burning number, but provides us for a given 
tested number n with the resulting number of unburned vertices. Of course, if the result would be zero unburned 
vertices, the tested number n might be the burning number. However, for our comparison, we are more 
interested with the number of remaining unburned vertices. The testing algorithm, further given in pseudocode 
as Algorithm 1 is adapted from Algorithm 1 in [18]. 

Algorithm 1: Heuristic testing centrality to minimize the number of unburned vertices. 

Input: A network Ӽ = (ԋ ,Ӻ), a guess value ԑԖ of a burning number, centrality method 
Output: Number of unburned vertices or a sequence ԍ = ԧφ,… , ԧսւ of nodes from Ӽ 

1: ԍ ← ∅ƒƒ;  ԉӼ ← Ӽ; 
2: for Ԙ = 1, … , ԑԖ do 
3:  ԜԐԧԒԞԜԟ ← component of ԉӼ with maximum no. of vertices 
4:  if ٺ ≥ radius of ԜԐԧԒԞԜԟ 

5:  then ۦډ ← v ∈ V | ԜԘԝ
֑∈շ (ֈռ֓դ֊ֈ)\չ

 ԔԒԒԔԝԣԡԘԒԘԣԨ(ԥ,ԜԐԧӸԞԜԟ) 

6:  else ۦډ ← v ∈ V | ԔԧԣԡԔԜԔ
֑∈շ (յը)\չ

 ԒԔԝԣԡԐԛԘԣԨ(ԥ, ԜԐԧӸԞԜԟ) 

7:  ԍ ← X ∪ xЏ 

8:  ԋր(ԧք) ← ego(G, bg − i, xЏ) 

9:  SЏ ←∪А=φ
А=Џ ԋրिԧօी 

10:  TG ← GॕV,E(TG)\E(G[SЏ])ॖ 

11: if ٪ۦ ≡ ٭  then return ٯ else return |٭  |ۦ٪\
 

The greedy Algorithm 1 contains some notions like component, radius, or eccentricity, that are standard in 
graph theory, and therefore shall not be explained further. However, the notion extreme centrality requires a 
more detailed description. Some approaches in centrality measures or indices, like eccentricity or eigenvalues, 
achieve their maximum value for the vertices in the “centre of the graph”, which is the present goal. Other 
indices, like a famous Wiener index, defined for a current vertex as the sum of the lengths of the shortest paths 
between the current vertex and all the remaining vertices, have their minimum in the “centre of the graph”. 
The decision, if to use maximum or minimum for a concrete centrality method is therefore not straightforward. 
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Since the eigenvalue centrality worked in [18] quite well, in further computations for a given graph firstly a 
correlation between the eigenvalue centrality and the tested centrality was calculated for the whole set of 
vertices. If the correlation was positive, the word extreme in the line 6 of the Algorithm 1 above was replaced 
by the function maximum. If the correlation was negative between the tested centrality and eigenvalue 
centrality, the extreme in the line 6 was replaced by minimum. The function ԔԖԞ(Ӽ, ԑԖ − Ԙ, ԧք) provides for a 
graph Ӽ and a graph distance ԑԖ − Ԙ all the vertices of Ӽ, which are within the graph distance ԑԖ − Ԙ of the 
vertex ԧք. 

4   The Results of Tested Centrality Indices Against Tested Networks 

4.1   Tested Networks 

The ultimate goal of the presented selection of centrality indices is rather practical, that is, the fast spread 
of information in a mobile network spread on a two-dimensional plane. It is reflected also on the choice of 
tested networks. Only three networks were selected for testing. The first one is called squaredIdealBurn7 and 
it is shown in Figure 1. It is an artificial example purposefully made to be difficult, originated in [18], but it 
approaches a regular two-dimensional grid network, only with its perimeter slightly irregular. This irregularity 
makes the placement similar to the problems encountered in reality, where the boundaries of a network are 
often irregular through the geographical features like presence of mountains or lakes.  

The second example, netscience, comes from a repository [15]. It serves as an example of a real (social) 
citation network, but is not really restricted much by two dimensional positions. 

The third tested network is a geometric random network, which was generated artificially, but this type of 
network is used regularly to simulate the landlocked hubs connections. It starts as a randomly generated 1000 
points (vertices) on a square of dimensions 1x1, where two vertices are connected, if their Euclidean distance 
is smaller than or equal to a given boundary, in our case 0.05. The networks characteristics given in Table 1 
substantially differ e.g. in maximum degree or number of triangles reflected by an average clustering coefficient. 
The networks are therefore expected to produce different test results. The best-found burning number was 
provided by the good, but complicated, time consuming algorithm from [18]. This was further used as a guess 
value ԑԖ of burning number for the above described Algorithm 1. 

Table 1: Characteristics of the tested networks 

Name of network Description |V| |E| 
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squaredIdealBurn7 artificial example 231 418 4 1 3.62 0.016 0.00 7 
netscience co-authorship 379 914 34 1 4.82 0.010 0.06 6 
Geometric random  generated net 1000 3770 19 1 7.54 0.008 0.61 11 
 

4.2   Tested Centrality Indices 

In the recent decades, a large number of centrality indices was designed, with their purpose ranging from 
quantitative structure activity relationships studied for chemical graphs by topological indices, applied analysis 
of complex networks [14,10] like brain/network analysis, targeted deconstruction of networks by deleting 
central vertices, finding unofficial influencers to spread political messages, preferential immunisation of people 
most likely to spread further a disease, up to finding key nodes in the internet.  

Methods resulting in functions to calculate such indices were gathered in many software libraries. This 
paper uses a more recent one, the R language library Central Informative Nodes in Network Analysis aka 
CINNA [1]. From these there were weeded out numerically unstable functions as well as those, which took too 
much CPU time. Thus, finally 31 centrality indices were selected. An example of their application is given in 
Figure 2, where the network squaredIdealBurn7 served for testing the Algorithm 1 with the guessed burning 
number 7, using the centrality index subgraph centrality. In the Figure 2 there is presented one of the better 
results of the subgraph centrality index, leaving us only with 17 unburned vertices, while the previously used 
eigenvector index resulted in 49 unburned vertices.  
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Table 2: Rank of achieved average numbers of unburned vertices as well as CPU time on PC for the tested 
centrality indices 

 

Method 
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1 Barycenter 
Centrality 

5 7 10 0.16 

2 Closeness 
(Freeman) 

6 10 11 0.10 

3 Lin Centrality 3 17 3 0.17 
4 Dangalchev Close. 8.5 11 2 0.28 
5 Residual Closeness 8.5 8 5 0.28 
6 Harmonic 

Centrality 
17.5 4 8 0.14 

7 Betweenness 24 9 1 0.14 
8 Decay Centrality 8.5 1 24 0.21 
9 Average Distance 20 6 6 0.53 
10 Wiener Index 22 5 9 0.23 
11 Radiality 

Centrality 
4 16 12 0.78 

12 Geodesic K-Path 2 13 23 0.41 
13 Markov Centrality 8.5 12 7 6.03 
14 Degree Centrality 19 23 15 0.03 
15 Closeness (Latora) 17.5 20 14 0.16 
16 Kleinberg's 

authority 
14 26 19 0.03 
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17 Cross-Clique Conn. 21 14 4 6.01 
18 Diffusion Degree 12 21 17 0.57 
19 subgraph centrality 1 25 22 1.95 
20 Lobby Index 16 15 21 0.60 
21 Kleinberg's hub 

cent. 
14 29 29 0.03 

22 Eccentricity 28 19 18 0.19 
23 eigenvector 14 28 30 0.03 
24 Laplacian Centr. 11 22 20 4.28 
25 K-core 

Decomposition 
25 27 26 0.03 

26 Max. Neigh. Comp. 26 24 13 3.30 
27 Leverage Centr. 30 3 28 5.42 
28 Group Centrality 29 2 31 4.43 
29 Local Bridging 

Centr. 
31 18 16 3.20 

30 DMNC Density 23 31 25 3.10 
31 Entropy Centr. 27 30 27 11.44 
 
 

 
    

 
Here it should be mentioned, that in the line 6 of the Algorithm 1 above, where the next vertex is to be 

selected, one sometimes has to choose from several vertices with the same index value. In that case the selection 
is made randomly. Since this decision substantially influences the result of the Algorithm 1, in case that such 
selection occurs, the method was repeated 100 times. This is reflected by the box-and whiskers plot describing 
the results in Figures 3-5, where in such cases a box and whisker extreme values show us quartiles, and the 
band inside the box is median, with possible outliers as open circles. However, for some of the indices, like for 
the eigenvector centrality, the values of vertices are all different in a non-symmetrical graph, resulting in just 
one value instead of a box and whiskers representation. 

The Figure 6 shows the ranks of the number of unburned vertices. Since for squaredIdealBurn7 network the 
centrality index, which achieved, on average, the lowest number of unburned vertices, was the subgraph 
centrality, its rank value shown in red is 1. The methods are ordered by the sum of the achieved ranks, and 
unfortunately, the results of subgraph centrality for the other two networks are not good, the index is placed 
in the Figure 6 in the second half. The same order of the centrality methods is in the Table 2, where the best 
ranking methods are emphasized by red bold numbers. From the Table 2, as well as from the Figure 6 it is 
apparent, that the best method for one type of network give substandard results for other types of networks. 
The “best all-purpose” indices like Barycenter or Closeness centrality do not provide real top results for any 
of the networks. Nevertheless, it is apparent, that some of the methods, like DMNC density or Entropy 
centrality end up near the “end of the race” for all the networks, as well as in CPU time. 
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Figure 2: An example of single time steps in the process of the burning of a graph by the Algorithm 1, using 
the subgraph centrality index on the squaredIdealBurn7 network already shown in Figure 1. Here, after 7 time 
steps of the cycle in the line 2 of the Algorithm 1, 17 vertices along the borders of the network marked by a 
white color were still left unburned. 

 

 
Figure 3: Number of unburned vertices after 7 time steps for squaredIdealBurn7 network. 
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Figure 4: Number of unburned vertices after 67 time steps for netscience network. 

 
Figure 5: Number of unburned vertices after 11 time steps for a geometric random network. 

5   Conclusion  
The best all-purpose centrality indices for burning number algorithms seem to be Barycenter and Closeness 
(Freeman) centrality indices. However, for practical mobile networks, the best model is a geometric random 
network and for this purpose a well-know betweenness centrality index provides the best results. In a real 
application, one can assume, that the rough number of vertices - mobile stations is known in advance, from 
which should roughly follow also the burning number guess. Unlike in the optimisation algorithm, where the 
algorithm has to start anew, if some vertices are left unburned, in practice after the guessed number of time 
steps the information continues to spread, so it takes perhaps just a couple of steps more for the information 
to permeate throughout the whole network. Therefore, even imperfectly selected sequence of centres to be 
informed “from outside” has a practical value. 
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Figure 6: Comprehensive results for all 3 networks, showing rank of the centrality indices for single 
networks as well as for the CPU time. 
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